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a b s t r a c t

Segmentation of medical images is an inevitable image processing step for computer-aided diagnosis.
Due to complex acoustic inferences and artifacts, accurate extraction of breast lesions in ultrasound
images remains a challenge. Although there have been many segmentation techniques proposed, the
performance often varies with different image data, leading to poor adaptability in real applications.
Intelligent computing techniques for adaptively learning the boundaries of image objects are preferred.
This paper focuses on optimization of a previously documented method called robust graph-based (RGB)
segmentation algorithm to extract breast tumors in ultrasound images more adaptively and accurately. A
novel technique named as parameter-automatically optimized robust graph-based (PAORGB) image
segmentation method is accordingly proposed and performed on breast ultrasound images. A particle
swarm optimization algorithm is incorporated with the RGB method to achieve optimal or approximately
optimal parameters. Experimental results have shown that the proposed technique can more accurately
segment lesions from ultrasound images compared to the RGB and two conventional region-based
methods.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Breast cancer is one of the most deadly cancers in women.
Because it is relatively inexpensive, noninvasive and accurate,
medical ultrasound (US) imaging has been regarded as one of
the gold standards for breast tumor diagnosis [1]. Early detection
of cancerous lesions is crucial for successful treatment and cure
of breast cancer. However, there are many speckles and shadows
in US images, which make the diagnoses subject to the radiolo-
gist's experience and skills. As a second reader, computer-aided
diagnosis (CAD) can largely increase the efficiency and effective-
ness of breast cancer screening. In CAD systems, segmentation of
lesions is the most essential and important step for further tumor
analysis [2].

There have been many segmentation methods proposed for
various applications, e.g. computer vision [3], object recognition
[4–6], and medical imaging [3,4,7–9]. Some of the methods have
been focusing on breast ultrasound (BUS) images [1,10–15]. Most
of the conventional methods can be grouped into two categories,
i.e. the clustering and the active contour model (ACM). Clustering
which is an unsupervised learning method uses an iterative

method to find clustering centers according to a criterion that
minimize the squared distances between sample points and
the clustering centers. The main strength of clustering based
method is that it can be automatically performed without the
need to set the initial contour. Xu and Nishimura [11] proposed a
method which uses the Fuzzy C-Means (FCM) which is a clustering
method incorporating both intensity and texture information of
images to extract breast lesions in US images. The method is more
tolerant to noises than conventional FCM, but the parameters in
the method are manually assigned, leading to unstable segmenta-
tion results.

The ACM also called snake is another popular segmentation
method for US images. It deforms in an iterative manner to be
close to the contour of breast tumor. The main weakness of this
method is that its segmentation results heavily depend on the
initial definition of object contours. The segmentation results
would be inaccurate if initial contours are poorly defined. Cur-
rently, the initial contours in the ACM methods can be defined by
either manual delineations or some complexly auto-initialized
methods. However, it is not easy to find out an automatic scheme
for defining the initial contours because of the blurry boundaries
inherent in the US images. Huang and Chen [12] utilized the
watershed transform and the ACM to overcome the natural
properties of US images, i.e. speckles and noises. In this method,
the watershed transform is treated as the automatic initial con-
touring procedure to maintain a rough tumor shape for the ACM.
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However, its performance varies with different images. Madab-
hushi and Metaxas [13] presented a technique to automatically
find lesion margins in US images. They used a method that
combines intensity and texture along with directional gradient
to roughly define the initial contours of breast lesions before using
the ACM. Nevertheless, there are several parameters that should
be carefully assigned in the method. In order to obtain good
segmentation results, the parameters should be manually adjusted
with respect to different US images.

In addition to the clustering and ACM methods, graph-based
segmentation techniques have become a hot research topic due to
their simple structure and solid theories [16,17]. Taking advantage
of graph theory, a graph-based image segmentation method aims
to make the neighboring pixels having similar intensities into one
minimal spanning tree (MST), which corresponds to a region
of the image. Huang et al. [14] proposed a method called robust
graph-based (RGB) method based on the graph theory and firstly
applied it for segmenting breast tumors in US images. In that
study, two significant parameters in graph-based segmentation
algorithm were empirically selected to achieve relatively good
results.

Generally speaking, there are one or more parameters that are
crucial to the final results in most of previously reported segmen-
tation methods. However, the parameters are usually manually
assigned by repeatedly testing to achieve acceptable results.
Therefore, how to find out the optimal or approximately optimal
values for the parameters using an optimization method is worth
being investigated.

In this study, we focus on incorporating an optimization
method into a previously reported segmentation method, i.e. the
RGB method [14], because the RGB is a typical segmentation
method whose performance heavily relies on the parameter
settings. The optimal or approximately optimal parameters can
be found in the hybrid scheme which is finally evaluated using a
set of BUS images. Many popular evolutionary learning algorithms
[18–23] are capable of solving global optimization problems. In
this study, the particle swarm optimization (PSO) algorithm is
chosen for finding the optimal parameters in the RGB and the PSO
algorithm not only shares many advantages with evolutionary
computing algorithms but also possesses improved computational
efficiency.

This paper is organized as follows. Section 2 introduces the
proposed parameter-automatically optimized robust graph-based
segmentation method (called PAORGB segmentation method) for
breast tumors in US images. A brief description of the RGB
segmentation method, evaluation function for optimization, the
standard particle swarm optimization algorithm and the proposed
method are given. Section 3 presents and discusses the experi-
mental results of the proposed method with a systematic compar-
ison with those produced by the RGB with the parameters

empirically selected, an automatic segmentation method [13],
conventional K-means and FCM clustering algorithms. In Section 4,
we finally draw the conclusions for this study.

2. Methods

In this study, we propose to incorporate a PSO algorithm into
the RGB segmentation method to optimize the parameters, so as to
make the results of the RGB method more reliable and accurate for
segmenting breast tumors in US images. The RGB method, evalua-
tion function for optimization and the PSO algorithm are firstly
briefly introduced, and the proposed hybrid approach is thereafter
described and summarized.

2.1. Robust graph-based segmentation method

Before the implementation of the RGB, a speckle reduction
procedure is needed to improve the quality of US images, because
there are plenty of artifacts (e.g. attenuations, speckles, shadow
and signal dropout) in US images [24]. Bilateral filter which has
been proved to be an efficient and effective method for speckle
reduction is firstly used in this study. Readers may refer to [25]
for more technical details. Fig. 1 shows the performance of the
bilateral filter.

Given an image which is initially regarded as a graph, the
RGB method aims to merge spatially neighboring pixels which
are of similar intensities into a minimal spanning tree (MST),
which corresponds to a subgraph (i.e. a subregion of the image).
The image can therefore be grouped into several subregions
(i.e. a forest of MST). Obviously, the step for mergence of pixels
into a MST is the key, determining the final segmentation results.
In [14], we previously proposed a pairwise region comparison
predicate to determine whether or not a boundary between two
subgraphs should be eliminated. Given a graph G¼ ðV ; EÞ, the
resulting predicate DðC1;C2Þ which compares the inter-subgraph
differences to the within subgraph differences is expressed by

DðC1;C2Þ ¼
true if Dif ðC1;C2Þ4MIntðC1;C2Þ
false other

�
ð1Þ

Dif ðC1;C2Þ ¼ jμðC1Þ�μðC2Þj ð2Þ

MIntðC1;C2Þ ¼minðsðC1ÞþτðC1Þ; sðC2ÞþτðC2ÞÞ ð3Þ

τðCÞ ¼ k
jCj � 1þ 1

α � β

� �
; β¼ μðCÞ

sðCÞ ð4Þ

where Dif ðC1;C2Þ is the difference between two subgraphs, C1 and
C2AV , MIntðC1;C2Þ represents the smallest internal difference of
C1 and C2, μðCÞ denotes the average intensity of C, sðCÞ is the

Fig. 1. An illustration of the bilateral filter's performance. (a) Original image, and (b) filtered image.
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standard deviation of C, τðCÞ is a threshold function of C, α and
k are positive parameters.

Based on the pairwise region comparison predicate, the summar-
ized procedures for segmentation of an image are as the following.

Step 1: Construct a graph G¼ ðV ; EÞ for a US image. In G, each
pixel corresponds to a vertex and an edge connects two spatially
neighboring vertices. The edge weight is defined by absolute
intensity difference between two adjacent pixels. Initially, each
vertex can be regarded as a subgraph and all of the edges forming
an edge set E are valid.

Step 2: Sort the edges in E in non-descending order in terms of
the edge weight. Set q¼1.

Step 3: Pick the qth edge in the sorted edges. If the qth edge is
a valid edge (i.e. it connects two different subgraphs) and the
boundary between the two subgraphs can be eliminated with
respect to the pairwise region comparison predicate as mathema-
tically expressed in Eqs. (1)–(4) , the two subgraphs are merged
into a larger subgraph and this edge is set to be invalid.

Step 4: Let q¼ qþ1. Repeat Step 3 until all edges in E have been
traversed.

When all edges have been traversed, a forest including a
number of MSTs can be obtained. Each MST corresponds to a
subregion in the image. Apparently, the selections of α and k in the
predicate introduced above would significantly influence the
segmentation results. In [14], the two parameters were empirically
selected. However, due to various appearances of BUS images,
fixed settings for the two parameters in the RGB may not lead
to acceptable segmentation performance for any of BUS images.
Therefore, an optimization scheme for the parameter setting in the
RGB is required to automatically select optimal or approximately
optimal parameters for a specific BUS image in order to achieve
the most acceptable segmentation result. In this study, we are
aiming to find appropriate α and k using the PSO algorithm.

2.2. Objective function for parameter optimization

Prior to the implementation of the PSO algorithm to find out
appropriate parameters in the RGB, an objective function should
be determined. A well designed objective function can make an
optimization method find the optimal solutions in a rapid and
efficient manner.

Due to the relatively low quality of clinical BUS images, a good
segmentation method has to make use of task-specific constraints
or priors [24] to improve the final results. In this study, we first ask
the operator to roughly delineate a small rectangular region in
which the breast lesion of interest is fully contained and located at
the central part, and to extract this region from the original BUS

image. By this way, the interferences from other regions unrelated
to the lesions of interest can be reduced as much as possible. Such
a small image is called tumor centered image (TCI) in this study.
Fig. 2 shows how a TCI is extracted from an original BUS image.
It is worth noting that a TCI is visually found and manually delineated
by an operator. Therefore, the operator must be experienced in
accurately finding a lesion of interest.

We apply the RGB method to the TCI in this study. When the
TCI is divided into several subregions, it is assumed that the
central subregion (including the central pixel) should contain most
part of the lesion because we have an a priori that the lesion
is locating at the central part of the TCI. Thus, the central subregion
is regarded as the reference region. The reference region is defined
as the subregion that contains the central pixel of the TCI in the
segmentation result of the RGB method. Fig. 3 gives an example of
the reference region. Reference region varies with the selection of
α and k. If the values of α and k are optimally or approximately
optimally selected, the reference region equals the breast tumor
subregion.

Because the reference region corresponds to the lesion in a BUS
image, our objective is to maximize the difference between the
reference region and its surrounding subregions. We take advan-
tage of a notion called Otsu's method [26] which can overcome the
problems of over- and under-segmentation. It selects an optimum
threshold by maximizing the between-class variance in a gray
image. Inspired by Otsu's method, the objective function SB for this
study is defined below:

SB ¼ ∑
n�1

i ¼ 0
PðCiÞðμðCiÞ�μðCRef ÞÞ2 ð5Þ

where n denotes the number of the subregions adjacent to the
Reference Region, μðCÞ denotes the mean intensity of subregion
C and PðCiÞ denotes the proportion of subregion Ci among all of the
n subregions in the TCI, expressed as

PðCiÞ ¼
jCij

∑n�1
i ¼ 0jCij

ð6Þ

where jCj is the size of subregion C.
It can be obviously concluded that the largest SB corresponds

to the maximal difference between the reference region and its
surrounding regions. With the proposed objective function, we
choose the PSO algorithm to be the optimization method used to
improve the performance of the RGB.

2.3. Particle swarm optimization algorithm

Particle swarm optimization (PSO) algorithm is an evolutionary
computation technique mimicking the behavior of flying birds and

Fig. 2. Roughly delineate the tumor centered image. (a) An original BUS image, and (b) tumor centered image cut from (a).
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their means of information exchange [17]. In the PSO algorithm,
each particle represents a potential solution, and the particle
swarm is initialized with a population of random individuals in
the search space. The algorithm searches the optimal solution by
updating the positions of the particles in an evolutionary manner.

Supposing there are np solutions each of which corresponds
to a particle, the position (i.e. the solution) and velocity of the
ith particle, i¼ 1;…;np, is represented by two m-dimensional
vectors, i.e. xi ¼ ðxi1; xi2;…; ximÞ and vi ¼ ðvi1; vi2;…; vimÞ, respec-
tively. According to the specific issues, an objective function is
used to evaluate the fitness of each particle. The best position of
the ith particle pi ¼ ðpi1; pi2;…; pimÞ is the best preciously visited
position of the ith particle during the updating process. The global
best position of the whole swarm obtained so far is indicated as
pg ¼ ðpg1; pg2;…; pgmÞ. At each generation, every particle tries to
modify its position according the current velocity, pi and pg. The
velocity vtþ1

i of each particle and its new position xtþ1
i are updated

according to the following equations:

vtþ1
i ¼wvti þc1r1ðpti �xti Þþc2r2ðptg�xti Þ ð7Þ

xtþ1
i ¼ xti þvtþ1

i ð8Þ
where t is the generation number, w is the inertia weight, c1 and c2
are positive parameters known as acceleration coefficients, deter-
mining the relative influence of the cognition and social compo-
nents, and r1 and r2 are independently uniformly distributed
random variables in the range of (0, 1). In the equation, wvi

t

represents the influence of the previous velocity of particle on its
current one. c1r1ðpti �xti Þ represents the personal experience.
c2r2ðptg�xti Þ represents the collaborative effect of the particles
and it always pulls the particle to the global best solution that
the swarm has found so far.

At each generation, the velocity of each particle is calculated
according to Eq. (7), and the position is updated by using Eq. (8).
Each time, any better position is stored for the next generation.
Each particle adjusts its position by its own ‘flying’ experience and
the experience of its companions. This means that if a particle
arrives at a promising new position, all the other particles
will move closer to it. This process is repeated until satisfactory
solution is found or a predefined number of generation is met.

The detailed procedures are summarized as follows:
Step 1: According to the search space, properly set the popula-

tion size and randomly initialize the particles.
Step 2: Iteratively traverse all the particles.
Step 3: In each traverse, evaluate every particle based on a

predefined objective function and update its position according to
Eqs. (7) and (8).

Step 4: Repeat Step 3 until all particles' positions have been
converged to an acceptable extent or the iterative number has
reached the predefined.

2.4. The proposed image segmentation method

As mentioned above, the values of parameters α and k can greatly
influence the performance of the RGB algorithm. Proper setting of α
and k leads to acceptable segmentation results. By taking advantage of
the PSO algorithm and the objective function designed in this study,
we propose a new method that is called parameter-automatically
optimized robust graph-based (PAORGB) image segmentation algo-
rithm. Generally speaking, the PAORGB segmentation method com-
bines a segmentation method (i.e. the RGB) and an optimization
method (i.e. the PSO). In each generation, every particle completes the
RGB segmentation method for a given BUS image and the objective
function is used to evaluate this particle and update the two
parameters (i.e. α and k) in the RGB for improving the segmentation
performance in the next generation. The position and velocity of a
particle are expressed as xi ¼ ðki;αiÞ and vi ¼ ðvki; vαiÞ, respectively.

The PAORGB method is summarized as the following.
Step 1: Manually delineate the TCI from the original US breast

tumor image.
Step 2: Use the bilateral filter to reduce the speckles in the image.
Step 3: Set the population size np and randomly initialize the

particles in the search space.
Step 4: Iteratively traverse all the particles. Let q¼1.
Step 5: In the qth traversal, for each particle, we use its position,

i.e. xi ¼ ðki;αiÞ, to execute the RGB segmentation algorithm.
Based on the evaluation function (i.e. Eq. (5)) in Section 2.2, the
segmentation result is evaluated and the particle's position is
updated according to Eqs. (7) and (8) in section IIC.

Step 6: Repeat Step 4 until all particles have been converged to
a certain condition (i.e. the updating of k is below 1 and that of α is
below 0.00001 for all the particles in an experiment) or q¼N,
where N is the predefined maximum number of generations.

When the iteration process is over, the global best particle
position corresponds to the optimal or approximately optimal
combination of α and k. With the searched α and k, we conduct
the RGB method and achieve the final segmentation results. Fig. 4
shows the flow chart of the proposed PAORGB method.

2.5. Experimental methods

According to our previous investigations [14], for segmenting
breast tumor in US images, k varies from 1 to 4000 and α from
0.0001 to 4.000, thus forming the search space of the PSO. After a

Fig. 3. The illustration of the reference region. (a) A segmented image by the RGB, and (b) the reference region of (a).
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random initialization of the np (np¼800 in this study) particles, we
use Eqs. (7) and (8) to update the positions and velocities of the
particles in the PAORGB. As suggested in [19], we set w¼1, c1 ¼ 1,
and c2 ¼ 1 in this study. The maximum generation number N is
empirically set to 1000.

The PAORGB method is developed using Visual Cþþ (Micro-
soft, USA) and runs on a CPU of 3.0 GHz and a RAM of 2 GB.
We test the PAORGB method using 20 BUS images, 10 of which are
benign tumors and the others of which are malignant. The images
are provided by Medical School, Shenzhen University, China. To
illustrate whether or not the parameters have been optimized, we
test the images using the RGB method with suggested combina-
tions of parameters α and k [14] and make the comparisons with
the proposed method. In addition, these images are tested using
the K-means and the FCM methods which have been recognized
as two efficient region based methods for image segmentation
for comparison purpose. In the K-means and FCM methods, both
K and c (i.e. the numbers of classes) are carefully set to make the
target regions isolated from the backgrounds. Finally, the proposed
method is compared with a fully automatic segmentation method
(called Madabhushi's method in this paper) [13].

To quantitatively compare different segmentation methods,
we use four criteria, i.e. averaged radial error (ARE), true positive
volume fraction (TPVF), false positive volume fraction (FPVF) and
false negative volume fraction (FNVF), to evaluate segmentation
results. Averaged radial error (ARE) [14] is used for evaluation of
segmentation performance by measuring average radial error of
the contours, with respect to the real contours which are achieved
by averaging the lesion boundaries delineated by three experi-
enced radiologists. The ARE is defined as

AREðnÞ ¼ 1
n

∑
n�1

i ¼ 0

jCsðiÞ�CrðiÞj
jCrðiÞ�Coj � 100% ð9Þ

where n indicates the number of radial rays and is set to be 180 in
our experiments, C0 represents the center of the “true” tumor
region which is delineated by experienced radiologists, Cs(i)
denotes the location where the contour of the segmented tumor
region is crossing the ith ray, and Cr(i) is the location where
the contour of the “true” tumor region is crossing the ith ray. It
is obvious that smaller ARE corresponds to better segmentation
accuracy. Fig. 5 illustrates the computation principle for the ARE.

In addition, the TPVF, FPVF and FNVF are often used in evaluation
of the performance of segmentation methods. The TPVF means true
positive volume fraction, indicating the total fraction of tissue in the
‘true’ tumor region with which the segmented region overlapped.
The FPVF means false positive volume fraction, denoting the

amount of tissue falsely identified by the segmentation method as
a fraction of the total amount of tissue in the ‘true’ tumor region.
The FNVF means false negative volume fraction, denoting the
fraction of tissue defined in the ‘true’ tumor region that was missed
by a segmentation method. Therefore, larger TPVF, smaller FPVF and
smaller FNVF indicate better segmentation performance. In this
study, the ‘true’ tumor regions are determined by averaging the
region boundaries delineated by the three radiologists. Fig. 6 shows
the areas corresponding to the TPVF, FPVF and FNVF, respectively.

3. Experimental results

In the experiments, the evolution of the PAORGB terminates
within 320 generations for each of the testing images, and takes
12.2 min on average, which is much longer than its counter-
parts. Figs. 7 and 8 demonstrate the segmentation results of a
benign tumor and a malignant tumor, respectively, using different
methods (i.e. the RGB with default parameters suggested in [14],
the proposed PAORGB, the K-means and the FCM clustering
methods). For breast tumor US images, the parameters k and α
are suggested to be 2000 and 0.01–0.05, respectively [14]. In this
study, we set (k, α) in the RGB to be (2000, 0.01), (2000, 0.02), and
(2000, 0.03), respectively, and the resultant segmentations can be
seen in Figs. 7c–e and 8c–e. It can be observed that the RGB with
suggested parameters leads to an over-segmentation. Figs. 7f
and 8f are the segmentation results of the proposed method,
offering visually improved segmentation results in comparison with
the RGB's results. The segmentation results using the K-means and
the FCM clustering methods are also shown in Figs. 7g, h, 8g and h,

Fig. 4. The flowchart for the PAORGB method (Conv., convergence; Trav., traversal;
Iter., iteration).

Fig. 5. An illustration of computation principle for the ARE.

Fig. 6. The areas corresponding to TPVF, FPVF and FNVF, respectively. Am indicates
the ‘true’ contour delineated by radiologists and An denotes the contour computed
using a segmentation algorithm.

Q. Huang et al. / Neurocomputing 129 (2014) 216–224220



respectively. Visually, the proposed method also outperforms the K-
means and FCM methods, especially for the malignant tumor as
illustrated in Fig. 8.

When applying Madabhushi's method [13] to the testing images,
it is only effective in 12 of the 20 testing BUS images because it
cannot always correctly find the seed points for the tumors. When
the seed for locating the lesion of interest is incorrectly found, a
totally unacceptable segmentation is resulted in. Fig. 9 shows the
comparison of segmentation results between the proposed method

and Madabhushi's method. The tumor contour curves of the
PAORGB in Fig. 9 are the boundary of the reference regions which
are the lesions of interest. It is obviously seen that the contours
generated by the proposed PAORGB are visually smoother and more
accurate than those delineated by Madabhushi's method.

Table 1 presents the quantitative comparisons of different seg-
mentation methods based on the 20 breast US images. As mentioned
above, quantitative results for the four measures for evaluation of
segmentation performance are given in this table. Similarly, we

Fig. 7. Segmentation results of a benign tumor. (a) Source image, (b) filtered image, (c) k¼ 2000; α¼ 0:01, (d) k¼ 2000; α¼ 0:02, (e) k¼ 2000; α¼ 0:03, (f) k¼ 355;
α¼ 0:002, (g) K-means, K¼3, and (h) FCM, m¼ 2; C ¼ 3.
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present the evaluations of the benign and malignant tumors,
respectively, as presented in Tables 2 and 3. It can be observed that
the proposed PAORGB method outperforms the other methods for
the ARE, TPVF and FNVF, and takes the second place for the FPVF,
indicating a significant improvement of segmentation performance
for the BUS images with either benign or malignant lesions. It is
noted that all of the segmentation methods almost perform better
on benign tumors, indicating that the boundaries of benign lesions
are more significant than those of malignant lesions.

4. Discussions and conclusions

This paper introduces a new segmentation method for seg-
menting breast tumors in US images. The proposed method is
based on a previously reported graph-based segmentation

algorithm (i.e. the RGB) and incorporates a particle swarm opti-
mization algorithm to optimize the parameters (i.e. k and α)
in order to overcome the problems of under-segmentation or
over-segmentation and improve the segmentation performance.
By making use of between-class variance maximum theory (i.e.
OTSU) to design the objective function of PSO, the proposed
approach is able to find out the optimal or approximately optimal
parameters for the RGB method within a limited computation
period. The experimental results have demonstrated that the
proposed PAORGB method significantly improves the performance
of the RGB and outperforms a previously reported automatic
segmentation algorithm and two conventionally used region
based methods (i.e. the K-means and the FCM methods). Espe-
cially, the technical improvement of the PAORGB is more signifi-
cant for the benign breast tumors according to Table 2, indicating
good merit in real clinical applications.

Fig. 8. Segmentation results of a malignant tumor. (a) Source image, (b) filtered image, (c) k¼ 2000; α¼ 0:01, (d) k¼ 2000; α¼ 0:02, (e) k¼ 2000; α¼ 0:03, (f) k¼ 1175;
α¼ 0:0004, (g) K-means, K¼3, and (h) FCM, m¼ 2; C ¼ 3.
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In the PAORGB, a reference region is required to be marked for
the optimization of segmentation results. As the reference region
is automatically found, the processes for segmenting the BUS
images and extracting lesions of interest can be regarded being
automatic. Nevertheless, the step to obtain the TCI (as shown in
Fig. 3) requires user's participation which may lead significant
influence to the following segmentations. To obtain acceptable
segmentations, the operator should be well experienced in exam-
ining BUS images and identifying important lesions in clinical
practices. In addition, the TCI should be carefully delineated to
achieve the full region of the lesion with partial surrounding
tissues and the lesion of interest must be locating at the center
part. From this point, the proposed PAORGB may be considered as
a quasi-automatic segmentation technique. How to automatically
extract the TCI from a BUS image and to make the PAORGB a fully
segmentation technique will be one of our future studies.

A worth mentioning drawback of the PAORGB is the computa-
tion time. As presented in Section 3, averaged computation time
of the PAORGB for the TCIs extracted from all of the BUS images
much longer than that of the RGB. It is due to the repeated
executions of the RGB methods during the process of parameter
optimization. For real applications, it may not be suitable as real-
time processing is often needed. To overcome this drawback, a
high-performance computer with multiple processors should be
helpful. In addition, with parallel processing techniques, complex
algorithms can be implemented on multiple computing grids,
leading to much reduced computation time. We will further make
efforts to parallelize the PAORGB method in future work.

In conclusion, this paper proposes a parameter-optimization
method which is incorporated into a previously reported segmenta-
tion method. The hybrid method is called parameter-automatically
optimized robust graph-based segmentation method. The particle
swarm optimization algorithm is used to optimize two parameters
in a segmentation algorithm (i.e. robust graph-based segmentation
method). By taking advantage of Ostu's method, an objective

Fig. 9. Comparisons between the PAORGB and Madabhushi's method. (a,b) Segmentation results of the PAORGB, and (c,d) segmentation results of Madabhushi's method.

Table 1
Overall segmentation performance (in percentage) of five segmentation methods
(the best values are in bold).

Methods ARE (%) TPVF (%) FPVF (%) FNVF (%)

PAORGB 7.072.3 90.174.3 2.270.9 9.974.3
RGB (k¼ 2000; α¼ 0:02) 10.371.2 84.378.1 1.471.4 15.778.2
K-means (K¼3) 11.272.7 83.874.8 2.672.5 16.274.8
FCM (c¼3) 18.2712.9 83.075.2 3.272.6 17.075.3
Mad.'s method 14.177.0 82.0711 8.375.5 18.0711

Table 2
Segmentation performance (in percentage) of the five segmentation methods on
BUS images with benign tumors (the best values are in bold).

Methods ARE (%) TPVF (%) FPVF (%) FNVF (%)

PAORGB 5.071.0 93.372.5 2.770.7 6.772.5
RGB (k¼ 2000; α¼ 0:02) 9.472.2 85.8712 1.871.1 14.2712
K-means (K¼3) 10.771.4 85.173.2 3.573.6 14.873.2
FCM (c¼3) 13.273.4 85.375.1 1.070.8 20.674.7
Mad.'s method 13.477.4 85.1712 10.075.9 14.8712

Table 3
Segmentation performance (in percentage) of the five segmentation methods on
BUS images with malignant tumors (the best values are in bold).

Methods ARE (%) TPVF (%) FPVF (%) FNVF (%)

PAORGB 8.272.2 88.073.7 1.870.9 1273.7
RGB (k¼ 2000; α¼ 0:02) 11.270.2 82.875.4 1.071.6 17.275.4
K-means (K¼3) 11.774.8 81.777.1 1.371.0 18.277.1
FCM (c¼3) 23.2717.8 79.374.7 5.474.2 14.675.2
Mad.'s method 14.676.7 79.679.8 7.075.5 20.379.8
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function is designed for guiding the searching for optimal para-
meters. The experimental results have shown that the proposed
method significantly improves the performance of the RGB
and outperforms the other two conventionally used region based
methods. It can be expected that the proposed method will be much
capable of extracting lesions from BUS images in various clinical
practices.
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