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Exploiting Local Coherent Patterns for
Unsupervised Feature Ranking

Qinghua Huang, Dacheng Tao, Member, IEEE, Xuelong Li, Senior Member, IEEE, Lianwen Jin, and Gang Wei

Abstract—Prior to pattern recognition, feature selection is often
used to identify relevant features and discard irrelevant ones for
obtaining improved analysis results. In this paper, we aim to
develop an unsupervised feature ranking algorithm that evalu-
ates features using discovered local coherent patterns, which are
known as biclusters. The biclusters (viewed as submatrices) are
discovered from a data matrix. These submatrices are used for
scoring relevant features from two aspects, i.e., the interdepen-
dence of features and the separability of instances. The features
are thereby ranked with respect to their accumulated scores from
the total discovered biclusters before the pattern classification.
Experimental results show that this proposed method can yield
comparable or even better performance in comparison with the
well-known Fisher score, Laplacian score, and variance score
using three UCI data sets, well improve the results of gene ex-
pression data analysis using gene ontology annotation, and finally
demonstrate its advantage of unsupervised feature ranking for
high-dimensional data.

Index Terms—Bicluster score, feature selection, unsupervised
learning.

1. INTRODUCTION

EATURE selection is an important preprocessing step
before recognizing meaningful patterns from a data set
with a large number of features. Many studies have shown
that features (dimensionality) can be reduced without degrading
classification/clustering performance [1]-[6]. Selecting an ap-
propriate subset of more representative features (or dimensions)
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can even improve the identification performance for patterns.
In contrast to the area of dimension reduction [3], [6], [32],
[33], the objective of feature selection is to find optimal or
suboptimal subsets from the original feature sets for irrelevant
features removal, intrinsic class information preservation, and
improvement of supervised and unsupervised classification per-
formance of classifiers. Many studies have shown that a good
feature selection method is very effective in improving pattern
mining performance and learning accuracy in numerous real-
world applications [4]-[9]. Feature selection is therefore re-
garded as an important preprocessing step for analyzing various
sorts of data analysis.

The methods of feature selection can be grouped into two
categories, i.e., the filter [10] and wrapper [11] methods. The
filter methods evaluate the relevance of each feature (or feature
subset) and select the features that can maximize some preset
performance measures. They are independent of the subsequent
learning algorithms (e.g., some classifiers). In contrast, the
second category (i.e., wrapper methods) makes use of prede-
termined learning algorithms to evaluate the feature subsets.
Hence, the goal of feature selection is to find the subset of
features that minimizes the classification error using a specified
classifier. Wrappers usually yield good classification accuracy
for a particular classifier at the cost of less generalization of the
selected features on other classifiers. In addition, although the
wrapper methods often outperform filter methods in practice,
they are intractable to large data sets and, hence, more compu-
tationally intensive.

In both filter and wrapper methods, the optimal feature
subset needs to be found. Accordingly, a number of methods,
including exhaustive search [4], sequential forward (backward)
selection [12], sequential forward (backward) floating search
[13], evolutionary search [14], etc., are performed to examine
combinations of feature subsets. Because the computational
complexity quickly increases with the number of features, it
is always impractical to evaluate a large number of feature
subsets. To overcome this problem, a number of filter methods
adopt the ranking method [18], [19], [25], [26] in which the
original d features are individually assessed and the m (< d)
best features can be selected for subsequent pattern analysis.
Although the ranking method is much faster than that of
exhaustively (or heuristically) searching for the optimal (or
suboptimal) feature subset, it has been recognized that the
subset of individually *“good” features may not collectively
provide good classification performance [15], mainly due to the
lack of information about feature correlations.

On the other hand, wrapper approaches evaluate the clas-
sification quality of each feature subset. The features with
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Fig. 1. Tllustration of the effect of classification performance under feature
subsets. The instances in group 1 can be well identified with the feature subset
{1, 2, 3, 4}, those in group 2 can be well identified with the feature set {5, 6,
7}, and those in group 3 can well be identified with the feature set {8, 9, 10,
11}. There does not exist an optimal feature subset that can well identify all of
the three groups.

strong interactions can be detected and grouped into a subset
during the search for possible combinations of features. Under
a specific feature subset, the classifier associated with a wrapper
method is globally applied to all instances for evaluating its
separability. However, in some cases, a group of samples can
be best clustered under a feature subset a, but another group of
samples can be best clustered under another feature subset b, as
illustrated in Fig. 1. In this situation, it is difficult to determine
which feature subset is optimal, and selecting an “optimal”
subset of features makes it impractical for discovering many
significant clusters that are best recognized under other feature
subsets. In other words, there are many meaningful patterns,
each of which has a subgroup of instances only under a certain
subset of features in many data.

Another example of such local pattern can also be seen
in Fig. 2, where the aggregated rows (instances) or columns
(features) are not necessarily consecutive. The local coherent
pattern containing a subset of instances and a subset of features
is first termed as a bicluster [16] for gene expression profiling
in microarray data. Applying conventional clustering algorithm
to rows or columns thus results in significant difficulty in
finding biclusters. In recent years, more and more attention
has been paid to discovering biclusters in microarray data [17].
Because a bicluster contains a subset of experimental condi-
tions and a subset of genes, the interrelationships among the
conditions and those among the genes can be revealed. In other
words, due to the intrinsic idea of bidimensional clustering, the
discovered biclusters are able to provide important clues for
extracting feature interdependencies and clusters of instances
and are therefore potentially useful for evaluating features by
simultaneously considering both feature interdependencies and
instance separability. Liu et al. [23] made use of a spectral
biclustering algorithm specifically for semi-unsupervised gene
ranking and combination.

So far, most of the filter and wrapper methods on feature
selection can be regarded as supervised algorithms since the
class labels are used. The supervised methods evaluate feature
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Fig.2. Example of a bicluster. A bicluster with constant columns is formed by
the highlighted elements, which are actually a submatrix with a local coherent
pattern.

subsets with respect to the relevance between features and class
labels. If the class labels are sufficient to categorize the data set,
supervised methods often outperform unsupervised methods.
Even with the presence of class labels, it is a challenging
problem. We discuss unsupervised learning, which is more
challenging. Recently, more and more attention has been paid
to developing feature selection algorithms for unlabeled data.
Some unsupervised methods [18], [19] find good features
according to the separability of instances. Dy et al. [12] de-
scribed an unsupervised wrapper method using an expectation—
maximization (EM) algorithm. The quality of clusters obtained
from different feature subsets are used for measuring cluster
separability. In more recent work [20], [21], feature similarity
was measured for detecting redundant features. Law et al. [22]
proposed a concept of feature saliency estimated using an EM
algorithm for simultaneously selecting features and clustering
instances.

In this paper, we propose a new unsupervised feature ranking
algorithm based on the discovery of biclusters. To the best
of our knowledge, it is the first attempt to making use of bi-
clustering analysis for selecting and ranking features. Because
this method incorporates a biclustering algorithm to discover
biclusters and ranks the features, it has some characteristics of
both feature ranking and wrapper methods and can therefore
be viewed as a hybrid model. We make use of the discovered
biclusters to evaluate features from two aspects, i.e., the inter-
dependencies among features and the separability of instances.
By considering both the feature correlations and instance sepa-
rability in evaluating the features, we propose a scoring scheme
to rank each of the features and test its performance using
several often-used UCI data sets [24], a real yeast gene expres-
sion data set [28], and a high-dimensional data set [30].

This paper is organized as follows. Section II introduces the
proposed algorithm in detail. Section III presents the experi-
mental results and the last section draws conclusions.
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II. UNSUPERVISED FEATURE RANKING ALGORITHM
A. Basic Idea

As illustrated in Fig. 2, a bicluster defined by a subset of
rows (instances) and a subset of columns (features) indicates a
submatrix, which can be viewed as a local coherent pattern. In
such a pattern, the set of features associated with the submatrix
have the same contribution to the identification of the clustered
instances, indicating that there exist correlations among these
features. Similarly, the correlations among its instances can also
be revealed, and the instances can be represented as a cluster
discovered under the feature subset, indicating a successful
separation from the other instances. Thus, it is observed that a
bicluster well exploited from the data matrix can provide useful
information about both the intercorrelations among its features
and the separability of the instance subset from the others under
its features. In this paper, we make use of the biclusters found in
a data matrix to score the features, and this new scoring scheme
is named as bicluster score.

To use the intrinsic information contained in a bicluster
for evaluating features, we first propose an effective biclus-
tering algorithm that converts the problem of searching for
biclusters into two easy-to-apply procedures: 1) conventional
hierarchical clustering (HC) of instances for each feature and 2)
heuristic search for the biclusters (submatrices) associated with
the clustered instances exploited in the first procedure. More
specifically, a cluster under a single feature in the first procedure
can be regarded as part of a potential bicluster. Its instances may
be the rows of the bicluster. Consequently, the second procedure
is to search for the features under which the same instances
can also be well clustered. The instances associated with the
cluster found in the first procedure and the features found in
the second procedure form a submatrix which is the bicluster
to be exploited. We may find a number of clusters in the first
procedure and the same number of biclusters after the second
procedure. From the discovered biclusters, two factors (i.e., the
feature interdependencies and the instance separabilities) are
thereafter considered and incorporated into the computation of
the bicluster score for each feature. Finally, the features are
ranked according to their bicluster scores.

B. Biclustering Discovery of Locally Coherent Patterns

As shown in Fig. 3, biclusters have several different models,
including the constant, multiplicative, and coherent evolution-
ary models. Details about biclustering algorithms can be found
in [9] and [17]. However, most of those algorithms are specif-
ically designed for analyzing gene expression profiles, where
the genes may be coregulated in a scaling, shifting, or even
hybrid manner [25] and, hence, cannot be directly used to solve
a generalized classification/clustering problem.

According to the Euclidean distance, the models with con-
stant columns in Fig. 3 can be regarded as a group of points
forming a compact cluster in a multidimensional space, which
can be well recognized using some conventional clustering
algorithms, such as HC [4]. Consequently, we focus on the
biclusters with constant columns in this paper.
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Fig. 3. Various bicluster patterns including constant, constant rows, constant

columns, coherent values with an additive model, coherent values with a
multiplicative model, and coherent evolution values in columns.

Although the rows of a bicluster can be simply extracted
using a conventional clustering method when the feature subset
is determined, it is not easy to find the feature subset for a
specific bicluster. For instance, there are oL possible feature
subsets when the full size of features is L. If L is relatively
large, exhaustively searching for these feature subsets will take
a very large amount of computation time. Instead of searching
for all possible feature subsets, we propose a new biclustering
algorithm involving three rapid procedures, i.e., 1) discovery of
bicluster seeds by applying the clustering to each feature; 2)
heuristic formation of biclusters; and 3) removal of redundant
biclusters.

In the first procedure, we detect the clusters of the elements
in each of the columns. As demonstrated in Figs. 2 and 3, the
elements under a single column in the submatrix of a bicluster
are approximately the same with a small variance and, hence,
can be found by a directly clustering method. In this paper, the
clustered elements under a single column can be thought of as
being potentially associated with a single or multiple biclusters.
A cluster detected in a single column is called a bicluster seed
in this paper. Thus, given a data matrix M with n, rows and n,.
columns, we first apply an agglomerative HC method using the
average linkage for clustering all of the elements under every
column and then obtain a preliminary set of bicluster seeds, as
formulated by

[CS(i7j)7Ncl(j)]:HC(j7Td)7 j=1-n. (D

BS—set:{Cs(iaj‘i:]- o 'Ncl(j)ajzl o ’nc} ()

where HC(j,Ty) is the HC algorithm applied to the elements
under the jth colomn with a preset distance threshold Ty,
N (j) denotes the number of clusters for the jth column,
Cs(i,7) is the ith bicluster seed under the jth column, and
BS_set is the aggregation of the bicluster seeds detected from
all columns. The time complexity of this procedure on each
single column is O(Ln?2).

As aforementioned, each of the detected bicluster seeds in
BS_set is regarded as a potential part of some unknown
biclusters. In the second procedure, we need to form larger
biclusters from these small bicluster seeds and refine these large
biclusters according to a predefined criterion. An algorithm
including three steps is proposed as follows.
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Fig. 4. Example for illustrating the procedure of expanding a bicluster seed and refining the expanded submatrix into a real bicluster.

(i) According to the number of rows, the bicluster seeds in
BS_set are sorted in an ascending order.

Beginning with the bicluster seed with the lowest row
number, each of the bicluster seeds in B.S_set is then
expanded along the column dimension. Given a bicluster
seed with I2; rows, a new submatrix M s can be formed
with R; rows and all of the n. columns.

An optimization algorithm is finally required to find
the largest bicluster that meets a certain homogeneity
criterion in M s.

(i)

(iii)

In the step (iii), the mean-square-residue (MSR) score [16],
which has been widely used as a metric for measuring the
homogeneity of a bicluster, is employed as the homogeneity
criterion. Given a submatrix with R rows and C' columns, its
MSR score is defined by

1
WR,C)=—=—— Y (ej—€ic—erj+erc)
|R| ' ‘C| i€R,jeC
1 1
€ic =17 Q_Cij» €Gj = 151 Q) Cij
CPIUEES PO

1
€RC = ToT AT eij
B[ - |C] 2 e

i€R,jeC

If h(R, C) < 4, accept it as a valid bicluster ~ (3)
where e;; denotes the element value at the ¢th row and jth
column in the bicluster, § is a homogeneity threshold defining
the maximum allowable dissimilarity within the elements of the
bicluster, and h(R, C) is the value of the MSR score for the
bicluster. The homogeneity threshold is set by users according
to their respective applications.

The task of step (iii) is fulfilled based on the MSR score.
A local search algorithm is then designed to find the largest
bicluster in Ms. For a submatrix Ms, defining an array of

nodes denoting its rows and columns, the search is performed
by iteratively deleting the nodes that mostly contributes to
the MSR score of M's until the MSR score of the shrunken
submatrix is no larger than a predefined homogeneity threshold
T,,,. More specifically, it starts with every M s associated with
the clusters in BS_set and consists of the following steps.

(a) Input a submatrix M.

(b) Set an array of the nodes denoting all of the rows and
columns of M.

For node 7, calculate the MSR score for a new submatrix
M., in which the node i has been deleted from M.
After each node in M has been considered, a set of new
submatrices, Set_M., and the corresponding MSR
scores are recorded.

Delete the node j corresponding to the new submatrix
M., that has the smallest MSR score in Set_ Moy,
and set the M, as M.

If the MSR score for M is larger than a predefined value
T, repeat step (ii). Otherwise, output M as the largest
bicluster.

(©

(@

(e)

The algorithm proposed for the second procedure is applied
to each of the bicluster seeds in BS_set and the output biclus-
ters are put into a new bicluster set, BC'_set. This procedure
is summarized and demonstrated in Fig. 4. The complexity of
this local search algorithm is O(dn?), where d is the number
of clusters in BS_set, and n is the number of both rows and
columns.

The third procedure gets rid of all redundant biclusters that
are fully covered by larger ones. This procedure is needed
because a redundant bicluster that is part of a larger bicluster
would lead to repetitive measures of the instance seperability
and feature correlations of its features. First, the biclusters are
ranked in BC'_set with respect to their column numbers in
ascending order. Second, the sorted biclusters are put into a new
bicluster set s_BC. Starting from the bicluster ranking at the
second place in s_BC, a bicluster is deleted if it is actually a
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Fig. 5. Diagram for illustrating the biclustering algorithm.

submatrix of another bicluster ranked at a lower place. Third,
till there is no bicluster that can be deleted in s_BC, the
remaining is the final output. The complexity of this procedure
is O(n?). This biclustering algorithm is summarized in Fig. 5.

Instead of exhaustively or heuristically searching for feature
subsets in conventional wrapper methods, the procedure of
searching for the column combination of a bicluster in our
method is converted into a heuristic refining a submatrix. Con-
sidering all of the three procedures, the computational complex-
ity of the proposed biclustering algorithm is much decreased.
Thus, our algorithm is much more efficient without the need to
repeatedly perform a clustering algorithm to evaluate every new
column combination.

It is noteworthy that the values of an instance may greatly
vary under different features. An HC method with a fixed T}
may be able to detect a cluster with a large number of elements
under a specific feature but unable to detect a cluster under
another feature if T; is much smaller than the feature’s variance.
Therefore, we use the following method to normalize each
column to ensure that most of the values in each column fall
into a limited range:

e(i, j) —mean (e(-, j))
2std (e(+, 7)) ’

en(i’j) =

1=1... j=1l...n. 4)

LI
where e(4, j) is the element value at the ith row and jth column,
mean(e(-,7)) denotes the mean of the elements under the
jth column, std(e(-,j)) is the standard deviation of the jth
column, and e, (i,7) is the normalized element value. After
the normalization of data values, the distance threshold 7}; and

the homogeneity threshold 77, are fixedly set to 0.01 and 0.02,
respectively, in this paper.

C. Feature Ranking Scheme

Once the biclusters have been found from the data matrix,
we need to extract information from them that can be used to
evaluate each of the features. As motivated by the two factors
(i.e., feature correlation and instance separability) mentioned
earlier, a scoring scheme (called bicluster score) is first pro-
posed by considering both factors in this paper. We define two
subsidiary scores that stand for the two factors, respectively,
i.e., the correlation score, which measures the correlations
among features in a feature subset, and the separability score,
which measures the separability of a feature. For the kth fea-
ture, suppose that it appears in any one of the biclusters from a
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bicluster subset Z,, the two scores (denoted as Cor_Score and
Sep_Score, respectively) are defined as follows:

Np,k

Cor_Score(k) = Z nka(z) )
i=1 c
Ny Nb, k
Sep_Score(k) = Tk Z(“z}k e s ©)
T i—1

where ny 5, denotes the number of biclusters in Zy, ny (i) is
the number of features for the ith bicluster in Zj, n, j, is the
number of the rows enumerated from all of the biclusters in Z,
i,k 1s the element average for the ith bicluster in Zj, under the
kth feature, and i, 1 is the average of ji; 1,7 = 1,...,np k.

It is observed that in Cor_Score, ny(i)/n. is the ratio
of the number of columns for the ith bicluster in Z;, to the
full length of columns. The Cor_Score actually equals the
summation of the ratios. If a feature is associated with a larger
number of biclusters, and/or the column dimensions of these
biclusters cover a larger portion of the full size of the dimen-
sion, the corresponding C'or_Score is larger and vice versa. In
Sep_Score, ng i /n, denotes the ratio of the instances that can
be clustered by the biclustering algorithm to the full number

of instances, and \/Z?:blk (Wil — fa,k)? /Mo is the squared
variance of the cluster centers for the kth feature. The larger
the ratio and/or the variance are, the larger the Sep_Score for
the feature is.

Finally, the bicluster score (denoted as Bic_Score) for the
kth feature is obtained by considering both of the two sub-
sidiary scores and is expressed as

Bic_Score(k) = «- Cor_Score(k) + Sep_Score(k) (7)

where Cor_Score(k) and Sep_Score(k) denote the
normalized values for Cor_Score(k) and Sep_Score(k),
k=1,...,n. respectively, and « is a regulation coefficient
for balancing the contributions of the Cor_Score and the
Sep_Score to the final Bic_Score. The features with higher
Bic_Score are viewed as being better at characterizing the
data clusters and linking with other features.

III. EXPERIMENTS

To evaluate the performance of the proposed feature ranking
algorithm, we conduct experiments using several standard data
sets and make the comparison with three often-used feature
selection algorithms: variance score [18], Laplacian score [19],
and Fisher score [18]. The former two methods are unsuper-
vised, while the Fisher score is supervised.

The method of variance uses the variance of instances for
each of the features as a measure to evaluate the separability.
For a given feature f and the instance values e(i, f), i =
1,....n., f=1,...,n, the variance score is defined by

1 & 1 &
VSj= 3 (el ) —up)® =D el ) ®

n
T i=1
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The Laplacian score is based on Laplacian eigenmaps and
locality-preserving projection. It prefers to selecting features
with strong locality-preserving power. The computation of
Laplacian score is expressed as follows:

Zi,j (e, f)—e(], f))2 Sij

LSf = . 2
> (e, f)—pug)” Dii
(Bl R .
e — ¢ , if x; and x; are neighbors, D;; = > Sij

0, Otherwise
)

where pi; is the mean of the instances under the feature f, ¢
is a constant parameter, and “z; and x; are neighbors” means
that either x; belongs to the k-nearest neighbors of z; or
vice versa.

The Fisher score can be grouped into the category of super-
vised feature selection algorithms as it uses class labels and
ranks features according to their discriminant ability. For the
fth feature, let n;(7) denote the number of instances for the ith
class,i=1,...,c,and u? and a} be the mean and variance of
the ith class, respectively. The Fisher score for the fth feature
is calculated by

S i) (1~ )

FSy = 2
S (i) (o)

(10)

A. UCI Data Sets and the Classifier

In this paper, we use three real-world data sets downloaded
from the UCI database [24]. They are the wine data, the
Wisconsin diagnostic breast cancer (wdbc) data and the con-
gressional voting records (House-Votes-84) data. The wine data
set has 13 features and 178 instances categorized into three
groups. The instances are wines, and the features are chemical
components. The wdbc data has 569 instances and 30 fea-
tures. It contains two groups, i.e., benign and malignant breast
tumors. The House-Votes-84 data has 435 instances, which are
congressmen, and grouped into two parties, i.e., republican and
democrat. The features are 16 votes for different topics. An
affirmative vote is denoted as 1, a negative vote is denoted as
—1, and an abstaining vote is denoted as 0.

In the experiments, we can generate a pair of training and
testing sets by randomly selecting half of instances from all
classes as the training set and setting the remaining half as
the testing set. For each UCI data set, 20 pairs of train-
ing and testing sets are generated. Different feature selection
algorithms are then applied to the testing sets. The features
are ranked according to their scores computed by each al-
gorithm. The feature number can be preset by users. With
a predetermined feature number, the nearest neighborhood
(1-NN) method with Euclidean distance is used as a classifier
to obtain the classification accuracy on the testing data under
the corresponding feature subset. Following the experimental
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TABLE 1
AVERAGED ACCURACY (IN PERCENTAGE) OF DIFFERENT
ALGORITHMS USING THE WINE DATA

Data Bicluster Fisher Variance Laplacian
Set 1 80.71+5.77 70.6+2.48 69.76+2.37 69.29+2.36
Set 2 87.36+8.59 71.91+1.92 71.53+1.94 71.35+1.76
Set 3 86.89+7.24 73.78+1.54 74.53+£2.26 74.44+2 .25
TABLE II
AVERAGED ACCURACY (IN PERCENTAGE) OF DIFFERENT
ALGORITHMS USING THE WDBC DATA
Data Bicluster Fisher Variance Laplacian
Set 1 80.88+8.74 88.73+3.98 75.02+2.21 74.99+2.21
Set 2 80.33+9.44 88.63+4.15 73.83+2.93 73.79+2.93
Set 3 79.11+5.44 89.16+4.11 75.86+3.01 75.79+3.03
TABLE III
AVERAGED ACCURACY (IN PERCENTAGE) OF DIFFERENT
ALGORITHMS USING THE HOUSE-VOTES-84 DATA
Data Bicluster Fisher Variance Laplacian
Set 1 95.17+0.88 93.92+1.57 87.16+15.22 92.97+3.51
Set 2 95.38+1.00 93.85£2.52 89.05£10.72 92.99+3.32
Set 3 93.0+1.25 91.32+1.49 86.09+14.0 89.73+3.59

methods used in [26] and [27], we evaluate the bicluster score
by comparing the classification accuracy obtained by different
feature selection algorithms. For the bicluster score, we set the
parameter « in (7) to 1.0 when comparing with the other three
algorithms.

B. Results for UCI Data Sets

Because of the limited length for this paper, we select three
pairs of training and testing data sets for each of the three
UCI data and present in detail the simulation results using
the selected data in Tables I-III and Figs. 6-8. Thereafter,
we summarize the feature selection performance of different
algorithms and present the overall comparison results using all
of the 20 pairs of data sets for each UCI data in Fig. 9.

Table I shows the averaged accuracy values of the four
algorithms using three pairs of training and testing wine data.
The accuracy values versus the number of removed features for
the three data sets can also be seen in Fig. 6. It is obvious
that the bicluster score significantly outperforms the others.
The reason can be explained by the intrinsic properties of
the features in wine data. Because the features are chemical
components contained in the wines, the density of one com-
ponent can influence those of the other components. Thus, it
is concluded that there are strong interdependencies among
the features. As stated earlier, our algorithm is good at dis-
covering feature interdependencies and, hence, can achieve
the best results for the wine data. From Fig. 6(d), the per-
formance of bicluster score is approximately improved as the
balancing parameter « is increasing. It implies that considering
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Fig. 6. Feature selection performance on the wine data sets. (a) Data set 1. (b) Data set 2. (c) Data set 3. (d) Accuracy against « for the bicluster score on

data set 3.

interdependencies of features is able to improve the feature
selection performance.

The simulation results for the wdbc data are summarized
in Table II and can be seen in Fig. 7. According to the
results, the Fisher Score significantly outperforms the others.
Nevertheless, our algorithm performs better than the variance
and Laplacian scores, indicating an improved performance of
feature selection for the data without class labels. According to
the description for wdbc data, the features are some quantities
(such as area, smoothness, and dimensions) measured from
breast tumor regions. Because these measures are performed
from very different aspects, it can be concluded that the inter-
dependencies among the 30 features are relatively weak;
thus, the C'or_Score cannot effectively influence the feature
orders. This explanation can be further proved as shown in
Fig. 7(d). It is noted that the varying values for the balanc-
ing parameter v cannot significantly change the classification
accuracy, indicating a relatively weak effect on the feature
selection.

Table III summarizes the averaged accuracy obtained by
different algorithms on the House-Votes-84 data. For these
data, our algorithm outperforms the others. As illustrated in
Fig. 8, the bicluster score achieves comparable (even better)
classification accuracy to that of the Fisher score and much
better results than the other two unsupervised methods. We can

conclude that there exist interrelationships among the features,
which are actually proposals in various economic and political
fields. Different proposals are likely to have overlapped parts
focused by the public. In addition, a group of congressmen
from a specific party may have positive views on a subgroup
of proposals and negative views on another subgroup. Hence,
there exist many subsets of features that internally influence
each other. Our algorithm is able to discover these feature sub-
sets; meanwhile, the interactions among these proposals to be
voted can accordingly help in differentiating the congressmen’s
political stands. The influence of different values of « is shown
in Fig. 8(d) and provides further support to this point. It can be
seen that the total classification accuracy keeps increasing as o
is increased.

Fig. 9 illustrates the overall comparison of feature selec-
tion performance for the four different algorithms using the
UCI data sets. The bicluster score is compared individually
with the other three methods. In each subfigure, the number
corresponding to the bicluster score means the number of
simulation data pairs in which our method outperforms its
counterpart in terms of the overall classification accuracy. It
is observed that our algorithm outperforms the others for the
data of wine and House-Vote-84 and achieves comparable
results with the variance and Laplacian scores for the data
of wdbc.
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data set 3.

To unveil the influence of the bicluster mergence procedure
introduced in Section II-B, we compare the feature ranking
performance of the proposed merging method with different
overlap degrees. We define the overlap degree between two
overlapping biclusters as the ratio of the overlapping part to
the full size of the smaller bicluster. If the overlap degree
for any two of biclusters is no less than a preset threshold,
the two biclusters should be merged into a larger bicluster.
The new bicluster should be then heuristically refined using the
local search algorithm introduced in Section II-B. By select-
ing the data sets shown in Figs. 6-8, the bicluster scores
are recomputed by setting the threshold of overlap degree
between any two of remaining biclusters to be 100%, 65%,
30%, and 0%, respectively. Table IV shows the comparisons of
the classification accuracy using different overlap degrees. The
bicluster score with larger thresholds of overlap degree in the
procedure of bicluster mergence achieves better classification
accuracy. It indicates that the mergence of biclusters with a high
overlap degree can be relatively more helpful in improving the
performance of feature ranking.

C. Results for Real Microarray Data

In the field of bioinformatics, the availability of gene
expression profiles under various experimental conditions

corresponding to different biological processes has led to fruit-
ful applications of well-established pattern classification algo-
rithms. Lots of attention has been paid to offering more accurate
and automatic pattern analysis of gene profiles for revealing
real biological pathways [17]. However, the microarray data
arranged as a data matrix can often be viewed as a high-
dimensional data set due to the large amount of genes and
conditions contained, suffering the effect of the curse of di-
mensionality, which leads to a challenge for mining meaningful
biological patterns.

In addition to UCI data, we evaluate our algorithm using
real microarray data in this paper. The gene expression data
set of S.cerevisiae provided by Gasch et al [28] is used.
The data contains 2993 genes and 173 experimental condi-
tions. We perform different feature selection algorithms to
rank the experimental conditions, and follow the feature se-
lection assessment method proposed by Zhu et al. [14]. They
performed a one-versus-all strategy, where a group of genes
associated with a selected gene ontology (GO) annotation
is viewed as a relevant class (positive class), and the other
genes are viewed as belonging to an irrelevant class (nega-
tive class) unassociated with the given GO annotation. In our
experiments, an online GO analysis tool, i.e., MIPS [29], is
used for assigning the genes to corresponding biological GO
function categories. In the experiment, we generate two data
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sets, each of which contains 1000 randomly chosen genes with
all conditions. The genes in each data set are then input into
the MIPS. Table V presents the specified gene function and
the number of genes in association with the function for each
data set.

Using the 1-NN classifier, we evaluate the classification
accuracy and error rates for different feature selection methods
when the condition number decreases. The error rate is de-
fined as the ratio of the number of negative genes incorrectly
classified into the positive class to the full number of negative
genes.

Figs. 10 and 11 illustrate the results using the two real
data sets. Table VI summarizes the averaged accuracy and
error rates obtained using the four different algorithms with
the two data sets. It can be observed that the bicluster score
obtains the best classification accuracy and relatively lower
error rates, indicating good capability of selecting significant
experimental conditions for classification of genes in a real
microarray data. In comparison with the Fisher score, which is
a supervised method, our algorithm, which is an unsupervised
method, achieves comparable results and further validates its
merit in selecting experimental conditions of microarray data.
The results also imply that there exist interrelationships among
the conditions (i.e., experimental stresses) in terms of the gene
expression responses since the bicluster score has improved
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the performance of condition selection in comparison with the
variance and Laplacian scores.

D. Results for High-Dimensional Data

To further illustrate the feature ranking performance of the
proposed bicluster score, we apply the bicluster score to a pub-
licly available high-dimensional data set, i.e., Gina, which can
be downloaded from [30]. The Gina data set has 970 features
and 3153 labeled instances. We randomly select 1000 instances
to construct a training set and another 1000 instances as a test-
ing set. The proposed bicluster score is applied on the training
set to rank the features, and the 1-NN classifier is carried out to
achieve the feature selection performance based on the testing
set. Similarly, the Fisher, Laplacian, and variance scores are
compared with the bicluster score using the same data sets.
Fig. 12 illustrates the comparison results. It is observed that the
Fisher score (a supervised method) achieves the best average
classification accuracy, which is 85.82%. For the other three
unsupervised methods, our bicluster score achieves the average
accuracy of 78.34%, which is better than the variance and
Laplacian scores, which achieve the average accuracy values
of 75.61% and 75.20%, respectively. Thus, the performance im-
provement for unsupervised feature selection using the bicluster
score can be proved with the high-dimensional data.
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Fig. 9. Overall comparisons among the four algorithms using all of the
simulation results in terms of the classification accuracy. (a) Bicluster score
vs. Fisher score. (b) Bicluster score vs. variance score. (c) Bicluster score vs.

Laplacian score.

MERGENCE USING THE SELECTED UCI DATA SETS

TABLE 1V
AVERAGED ACCURACY (IN PERCENTAGE) OF THE BICLUSTER SCORE
WITH DIFFERENT OVERLAP DEGREES IN THE PROCEDURE OF BICLUSTER

Data Overlap degree
100% 65% 30% 0%

Set1  80.71+5.77 81.24£6.03  76.07+6.83 74.72+6.51

wine Set2  87.36+8.59 85.62+7.12 77.49+8.13 76.87+7.70
Set3  86.89+7.24  86.30£7.71  75.73+7.01 73.88+5.78

Set1  80.88+8.74  80.06£8.85  77.12+6.89 77.05%6.63

wdbe Set2  80.33+9.44  79.54£7.94  77.44+5.70 76.58+6.82
Set3  79.11£5.44  79.67£731 78.35+7.52 77.12+7.06

Set1  95.17+0.88  95.15+0.94 92.73+1.40 90.34+1.03
house-vote-84 Set2  9538+1.00 94.78=0.86 92.55+1.52 90.98+1.24
Set 3 93.0+1.25 93.0+1.25  89.36+1.29 88.34+1.43

TABLE V

NUMBER OF GENES IN THE POSITIVE CLASS AND THE GO CATEGORY
DETERMINED FOR THE TWO YEAST MICROARRAY DATA SETS

Data GO functional category No. of genes in positive class
Set 1 10.03 cell cycle 152
Set 2 10.03 cell cycle 156
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HUANG et al.: EXPLOITING LOCAL COHERENT PATTERNS FOR UNSUPERVISED FEATURE RANKING

TABLE VI
AVERAGED ACCURACY AND ERROR RATES (IN PERCENTAGE) OF
DIFFERENT ALGORITHMS ON THE TWO MICROARRAY DATA SETS

Bicluster Fisher Variance Laplacian

Data

Accuracy  Errorrate Accuracy Errorrate Accuracy Errorrate  Accuracy  Error rate

Set1 6525419 3531x359 6147+4.7 38214255 624727 38.19£299 65.08+5.14 37.9+357

Set2 65.81+5.32 37.37+2.12 58.94+585 37.04+1.7 54.87+5.29 37.81+2.67 62.47+6.62 41.97+3.23

IV. DISCUSSIONS AND CONCLUSION

In this paper, a novel unsupervised feature selection algo-
rithm is proposed. This algorithm is based on an unsupervised
biclustering algorithm that can discover local coherent patterns
in a data matrix. The discovered local patterns including a sub-
set of instances and a subset of features simultaneously reveal
both the separability of instances and interdependencies among
features. We propose a new scoring scheme, which is called
bicluster score. Like a wrapper method, the bicluster score
first discovers biclusters in a data matrix, then calculates two
subsidiary scores by considering the clustered instances and
features for each bicluster and finally computes the bicluster
score by summing the two subsidiary scores.

The experimental results using three UCI data sets demon-
strate that the bicluster score can outperform two often-used
unsupervised feature ranking algorithm and produce compa-
rable or even better results than the Fisher score, which is a
supervised method. In particular, our algorithm significantly
outperforms the other three algorithms using the wine data
set, indicating that the features (chemical components) have
relatively strong correlations. In contrast, for the wdbc data,
the Fisher score demonstrates the best performance on feature
selection, showing that the features extracted from breast tumor
images are relatively independent of each other. As a result,
our algorithm is unable to improve the classification results by
considering the correlations among the features. For the House-
Votes-84 data set, our algorithm generates the best results,
illustrating the features (proposals to be voted) are interrelated
to each other, and some of them have similar influences on a
subgroup of congressmen from a specific political organization.
In addition, the results using the real microarray data illustrates
that the bicluster score can yield comparable or even better
feature selection performance in comparison with the other
three algorithms, presenting good merit in practice. Finally,
we evaluate the feature ranking performance of bicluster score
using a high-dimensional data set, i.e., Gina. By comparing
the four methods, the bicluster score outperforms the other two
unsupervised methods. Although the Fisher score achieves the
best results, the bicluster score has demonstrated its advantage
in unsupervised applications.

However, a drawback of bicluster score should be the in-
creased computational expense. In our experiments, the com-
putational time for the bicluster score is usually five to ten
times as much as those of its counterparts. The acceleration
of the computation of bicluster score is worth being a future
research topic. Another drawback is the difficulty of choosing
an appropriate « in the bicluster score for a data set without any
prior knowledge. According to the motivation of the bicluster
score, we aim to rank the features by taking into account not
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Fig. 12. Comparison of feature selection performance for the four algorithms
using a high-dimensional data set, i.e., Gina.

only the separability but also the feature correlations. A well-
selected « should be able to perfectly balance the C'or_Score
and Sep_Score. It is reasonable that prior knowledge of the
feature correlations in a data set would be useful for the
determination of «. In our future study, various data sets with
some prior knowledge for feature correlations will be carefully
tested to find out the methods for the optimal selection of a.

It is also worth noting that the bicluster score is actually
making use of a support-based pruning strategy and needs sev-
eral supporting parameters, e.g., T,,, and 7};. Different support
levels for the parameters would significantly affect the final
results. Recently, Xiong et al. [31] have proposed a framework
for mining highly correlated association patterns called hyper-
clique patterns, which can overcome the problem of support-
based pruning. Hence, incorporating the hyperclique patterns
into the bicluster score will be part of our future research.

In summary, the results have demonstrated that the bicluster
score is able to conduct feature selection on several UCI and
real microarray data sets with good performance. By ranking
the features according to the discovered biclusters, it can be
expected to be suitable for various data sets, particularly the
ones with strong interdependencies among the features.
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