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Abstract— With the rapid development of mobile devices
and pervasive computing technologies, acceleration-based human
activity recognition, a difficult yet essential problem in mobile
apps, has received intensive attention recently. Different accel-
eration signals for representing different activities or even a
same activity have different attributes, which causes troubles
in normalizing the signals. We thus cannot directly compare
these signals with each other, because they are embedded in
a nonmetric space. Therefore, we present a nonmetric scheme
that retains discriminative and robust frequency domain infor-
mation by developing a novel ensemble manifold rank preserv-
ing (EMRP) algorithm. EMRP simultaneously considers three
aspects: 1) it encodes the local geometry using the ranking order
information of intraclass samples distributed on local patches;
2) it keeps the discriminative information by maximizing the
margin between samples of different classes; and 3) it finds the
optimal linear combination of the alignment matrices to approx-
imate the intrinsic manifold lied in the data. Experiments are
conducted on the South China University of Technology natural-
istic 3-D acceleration-based activity dataset and the naturalistic
mobile-devices based human activity dataset to demonstrate the
robustness and effectiveness of the new nonmetric scheme for
acceleration-based human activity recognition.

Index Terms— Acceleration signals, frequency domain
information, human activity recognition, intrinsic manifold
approximation, rank order, spectral geometry.

I. INTRODUCTION
UMAN activity recognition receives intensive attentions
in recent years, due to many practical applications,
such as video surveillance [39], [44], health care [34], [43],
and context-aware computing [28], [47]. In general, pattern
recognition schemes can directly handle the samples which are
represented in a vector space. In most neural networks system,
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such as traffic signs recognition [12] and character recogni-
tion [27], the samples can be easily converted into feature vec-
tors after normalizing the size of the input images. However,
existing human activity recognition systems, which can be
classified into two groups: computer vision-based systems and
accelerometer-based systems, often suffer from the difficulty
of effective feature representation and selection. Computer
vision-based human activity recognition systems [24] perform
poorly because of the variations of illumination conditions in
sophisticated environments and motion blur. Accelerometer-
based human activity recognition systems [28] cannot perform
well because the sensor positions are not fixed. We review
some representative works as follows.

Computer vision-based human activity recognition
systems [24] decomposed images into a variable number
of parts using interest point/region detectors, and then
some feature descriptors, such as scale invariant feature
transform [32], speeded up robust features [3], and local
binary patterns [33], are used to represent these parts. The
conventional pattern recognition algorithms cannot apply.
Spatial pyramid matching [29] and locality-constrained
linear coding [46] are proposed to address this problem by
utilizing efficient coding schemes. Using dissimilarity-based
representation concepts, Carli et al. [10] proposed a common
framework to obtain robust performance.

Accelerometer-based human activity recognition [28],
[43], [47] is an important alternative, which has received
increasing attentions due to the popularity of smart phones in
recent years. It exploits acceleration signals from smart phones
equipped with the accelerometer to analyze and recognize
daily human activities such as standing, walking and running.
This approach has largely increased the possibility to reach the
dream of pervasive computing. Recently, Kwapisz er al. [28],
Tentori and Favela [43], and Wang et al. [47] have made sig-
nificant progress in mobile music recommendation and mobile
activity monitor by utilizing a set of related technologies.
Before we apply learning models to the acceleration signals,
there is a problem to be noticed, i.e., different acceleration
signals for representing different activities or even the same
activity with different attributes that could cause trouble in
aligning time-axis and determining the length of signals.
However, it is a standard scheme [2], [28], [45] to use fixed-
length signal segments to represent a human activity. It is
difficult to directly compare the envelope of acceleration
signals in testing stage, because they are embedded in a non-
metric space. Representative nonmetric learning algorithms are
summarized as follows. Jacobs and Weinshall [25] proposed
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Fig. 1. Nonmetric scheme for acceleration-based human activity recognition. This scheme contains the following three components. 1—Using a fixed-

length of window to cut out a section of the signal for extracting FFT coefficients and repeating this process from the beginning to the end of the signal.
2—Concatenating all the FFT coefficients as the frequency domain information. 3—Extracting the discriminative and robust information by EMRP for the

subsequent classification.

a nonmetric distance-based classification scheme and applied
it to image retrieval. Tosato et al. [44] proposed a weighted
array of covariances to represent a tiny image. Xu et al. [49]
introduced the Ricci flow to embed and rectify nonmetric
dissimilarity data. Bulo and Pelillo [7] proposed a model based
on game theory to explore the hypergraph clustering problem.

Recently, various approaches based on accelerometer have
been proposed to resolve the human activity recognition.
Bonomi et al. [1] proposed a scheme that utilized a decision
tree to classify measurements about time-domain information
(including the average, the standard deviation, etc.) of a fixed
intervals of signals. Ermers et al. [16] proposed a scheme,
which combined a decision tree model with a neural networks
model to improve the performance of acceleration-based
human activity recognition. Recently, it has been found in
experiments [50] that fast Fourier transform (FFT) coefficients
obtain satisfactory recognition accuracy. Long er al. [31]
utilized principal component analysis (PCA) [23] to find a low-
dimensional representation for the time-domain information
and the frequency domain information. However, PCA ignores
the class labels that are essential to retain the discriminative
information for the subsequent classification. Dimension
reduction algorithms exploring the local geometric information
find subspaces where the geodesic distance between the
original signals can be effectively preserved. Therefore,
we propose a new spectral geometry algorithm for human
activity recognition, termed ensemble manifold rank preserv-
ing (EMRP). It models the similarity by exploiting the ranking
order information of samples distributed on local patches
and retains the discriminative information by maximizing
the margin between samples of different classes. Especially,
EMRP finds the optimal linear combination of the alignment
matrices to approximate the intrinsic manifold lied in the data.
Note that EMRP is different from other manifold learning
based dimension reduction algorithms, such as rank preserving
discriminant analysis (RPDA) [40], locality sensitive

discriminant analysis (LSDA) [9], and discriminative locality
alignment (DLA) [52]. The main differences are twofold.

1) The performance of RPDA, LSDA, and DLA
heavily rely on the predefined hyperparameters
and cross validation is required for these parameters
to obtain reasonable performance, because different
hyperparameters induce different manifolds for encoding
the local geometry. The proposed EMRP explores a
set of hyperparameters and is robust to the initial
hyperparameters by assuming that a linear combination
of these manifolds approximates the intrinsic manifold.

2) RPDA, LSDA, and DLA use an alignment matrix to
estimate the intrinsic manifold and can be solved by the
generalized eigenvalue decomposition. However, EMRP
use the optimal linear combination of the alignment
matrices to approximate the intrinsic manifold. The
solution of EMRP is an alternating minimization
procedure which is a combination of the generalized
eigenvalue decomposition and the coordinate descent.

For acceleration-based human activity recognition, we

present a new nonmetric scheme that includes the following
steps: 1) using a fixed length of window to cut out a section
of the signal for extracting FFT coefficients and repeating
this process from the beginning to the end of the signal;
2) concatenating all the FFT coefficients as the frequency
domain information; and 3) extracting the discriminative and
robust information by EMRP for the subsequent classification.
Given the limited page length, we mainly describe the newly
proposed EMRP, the other parts are easy to rebuild based
on the references cited therein and will be sketched at the
experimental part. Fig. 1 shows the architecture of the pro-
posed scheme. The main contribution of this paper include:
1) we propose a spectral geometry approach EMRP which
finds the optimal linear combination of the alignment matrices
to avoid the time-consuming cross-validation procedure and
2) we conduct comprehensive experiments to demonstrate that



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAO et al.: EMRP FOR ACCELERATION-BASED HUMAN ACTIVITY RECOGNITION 3

TABLE I
IMPORTANT NOTATIONS USED IN THIS PAPER AND THEIR DESCRIPTION

Notation Description Notation Description

X high-dimensional feature vectors S, selection Matrix

Y achieved succinct representations w,) ; weight factor of intra-class on a local patch

D dimension of original feature vectors (v) ; weight factor of inter-class on a local patch

d reduced dimension I trade-off parameter in a local patch

N size of the feature vectors X L, representation of part optimization

k, number of closest intra-class samples L alignment matrix

k, number of closest inter-class samples He weight factor of candidate alignment matrices

C, class label m number of candidate alignment matrices
trade-off parameter to control the contributions of the

X, local patch Lo
regularization item

Y, succinct representations of local patch U projection matrix

the newly developed EMRP can improve the performance of
accelerometer-based human activity recognition.

The rest of this paper is organized as follows. In Section II,
we detail the newly proposed EMRP. Section III shows the
experimental results on two datasets. Section IV concludes
this paper.

For convenience, Table I lists the important notations used
in this paper.

II. RELATED WORK

In this section, we briefly review the existing techniques
of spectral geometry. These techniques are widely used in
accelerometer-based human activity recognition and other
pattern recognition problems. We can simply group these
techniques into two categories: globally linear learning based
algorithms and manifold learning based algorithms.

The most representative works of globally linear learning
include PCA [23] and linear discriminant analysis (LDA) [17].
The PCA aims to find the principal subspace in which the
variance of the projected feature vectors is maximized.
By utilizing class labels and assuming data from different
classes are drawn from equal variance Gaussian distributions,
the LDA finds the subspace in which the classes of objects can
be properly separated. Ji and Ye [26] proposed a framework
to unify LDA and some modified versions. Geometric
mean-based subspace selection (GMSS) [41] have explored
the general mean concept instead of the arithmetic mean used
in LDA and achieved a superior performance.

Recently, manifold learning based algorithms play an
important role in many intelligent systems and have received
extensive attentions. In general, most manifold learning
algorithms assume that the samples lie on a low dimensional
submanifold embedded in a high-dimensional Euclidean
space. The early representative works include ISOMAP [42],
locally linear embedding [38], Laplacian eigenmaps (LEs) [4],
and locality preserving projections [22]. Linear and supervised
learning algorithms, such as LSDA [9], marginal Fisher’s
analysis (MFA) [48], and DLA [52] are popular for

classification problems. Recent research work explores the
nonnegative and the sparse properties, e.g., nonnegative local
coordinate factorization [11], graph regularized nonnegative
matrix factorization [8], and nonnegative patch alignment
framework (PAF) [19], [20].

III. ENSEMBLE MANIFOLD RANK PRESERVING

In this section, we present a new spectral geometry
algorithm for human activity categorization, EMRP.

It is well known that the concentration of measure
phenomenon significantly impacts on the outcomes of
spectral geometry algorithms [14], [37], because the dissim-
ilarities between pairs of intraclass samples are commonly
indistinguishable, after dimension reduction based on spec-
tral geometry algorithms [35]. Some unsupervised learning
methods [36], [51], [53], which utilize preservation of the
rank order information of samples [30] in the process of
transforming samples from a high-dimensional space to a
low-dimensional subspace, have been proposed to reduce this
problem.

Supervised learning methods which utilize the class label
information are suitable for classification tasks. They confront
the different problem that dimension reduction always
brings variations in the original distribution of samples [14].
Thus, ignoring the information about the interclass samples
ranking order is preferred in the process of extraction of
discriminant information [9], [52]. This arrangement is more
practicable for us to selectively shrink or stretch a suitable
distribution for original data.

Note that many spectral geometry approaches [9], [21]
can be built under the umbrella of the PAF [52], because
the intrinsic differences mainly exist in the part optimization
stage and an almost identical process is provided in the whole
alignment stage. We can conveniently use this characteristic
to encode the rank information of intraclass samples and
the discriminative information of interclass samples on local
patches.

In human activity categorization, N human activities repre-
sented by a fixed length of features are recorded in a matrix
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X = [x1,x2,...,xx] € RP*N_ in which each D-dimensional
feature vector x; € RP is associated with a class label (an
entry in the label vector) in C = I[c1,c2,...cN] € AR
The supervised spectral geometry algorithm aims to find a
matrix U € RP*? that projects the original samples X from
the high-dimensional space R” to a low-dimensional subspace
R% and achieves succinct representations ¥ = UTX =
[v1, ¥2,...yn] € RN, where d < D.

Under PAF [52], a patch defines a local coordinate system
by exploring a sample and its nearest neighbors (NNs),

and thus we denote a local patch X; = [x;,x;1,..., %k,
Xigsooos Xig, | € RP*kitke+1) by ytilizing an arbitrary sample
x; and its k; closest intraclass samples Xily ooy Xihy and

ky closest interclass samples x;,..., iy - Thus, EMRP
finds the corresponding low-dimensional representation, i.e.,
Yii = [is Yitseoos Yikis Yirs -5 Vi, ] € Réxkithkat]) - The
optimization objectives of patches are: 1) to preserve the
ranking order information of the intraclass samples as much
as possible and 2) to maximize the discriminative information
between the interclass samples.

A. Ranking Order Information Preservation

Rank order information contributes to preserving the
distribution information of samples [30]. However, it is
difficult to directly model the rank information, therefore the
relative distances are considered in the objective function.
Motivated by the success of LE [5], we define the ranking
order information of intraclass on a local patch as

ki
R =D llyi = yus IPwi) (1)

j=1

where the weight factor (w;); is

N [exp(=lxi = x;12/0),  if x; € Ny (xi)
(wi)j = [O, otherwise @)
the penalized factor (w;); models the difference by

respectively utilizing a large and a small value of weighting
to emphasize small and large distances in the original
high-dimensional space.

In the frame of PAF, we further deduce (1) to

i — yil)T
R(y)=tr diag(wi)lyi — yits - yi — il
i —yi)T
T
= tr(Yr4) LR() YR(3)) 3
where
g
T e —
Lray = | 5k | diagwi)[ —ex, I 1, ex = | 1 1
(l) Ik g Wl ek] kl ) ekl R )
1
ki

. —_——~—
Iy, =diag({1,...,1), and Ygg) = [yi, ¥i1, -5 Vit 1
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B. Discriminative Information Maximization

In supervised spectral geometry learning schemes,
discriminative information plays a critical role. In our EMRP
scheme, we consider to extract the discriminative information
by maximizing the sum of distances between y; and its kp
interclass samples

ko
D(yi) = Z lyi = vi, Hz(Vi)j. 4
p=1

It is unavoidable that the original distribution varies in the
procedure of dimension reduction [13], so we consider to
drop the interclass ranking informant and define the weight
factor (v;); as

N R if x;; € Ni, (x;)
(vi)j = IO, otherwise )
in the frame of PAF, we further deduce (4) to
i — i)
D(y))=tr diag(vi)lyi = Y>> Yi — Vi, ]
i — yi,)"
=t (Yoo Lo Y ) 6)
where
k2
ey ——"
Lpg) = 1k2 diag (v;) [ —ex, I, I, ex, = | 1,...,1
2
ko
. —_——~—
Iy, =diag|1,...,1), and Ypg) = [yi, Yiy»---» y,-kz].

Thus, we can obtain the optimization function on a local
patch

ki ko
argmin 3" i =y | (wi); =7 3 i = 33, IP0);
Jj=1 p=1

@)

where y € [0,1] is a tradeoff parameter to integrate
the contributions of intraclass samples and those of the
interclass samples in a local patch. We denote the index set
F={i,i',i%, ...,i%, i1, i, .. i} and deduce (7) to

k1 ko
argmin > llyi = yi 00 =7 2 i = vy, 17 0);
b=l p=1
k1 +ky
afgfr;in D yem = yEGlIFw);
i j=1

_eT ,
arg min tr[Yi [ i+ i| diag(wi)[_ek1+k2 1k1+kz]YiT]
Yi Ik1+k2
(3
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where tr(-) is the trace operator

k1+ko

—_———
ek, = [1,..., 1T e RM YR = diag [ 1,...,1

ki ko
’ e e —_—
Wl = (Wl)19 LI (Wl)]q» L] _Vk1+1» s _sz
Yi:[yi»yilﬂ""yikl’yil""9yik2]~

In the frame of PAF, we further define the alignment matrix

T

—e . 4

L= [ I kitk i| dlag(wi)[ €k +k; 1k1+k2 ] 9)
ki+ko

and (8) can be rewritten as

argn}in tr(Y,-L,-YiT). (10)
We denote the selection matrix as
N _ | it p=Fi{q}
(Si)pg = IO, else an

where S; € RN*(kit+ka+D)  Afterward, we can integrate all
local patches Y; = [yi, ¥;1, .-, Yikis Yigs - -+ y,-kz] in a unified
coordinate system as follows. First, the coordinate of Y; is
selected from the global coordinate system. The coordinate
of the low dimensional representation Y; is then given by
Y=U"X =[y1,y2,...,yn] € ROV
Y, =YS;. (12)
Thus, by utilizing (12), the optimization function on a local
patch (10) can be rewritten as
argmyin tr(YSl-LiSl-TYT). (13)
Second, we sum over all the optimization functions on the

local patches defined in (13) over N samples to obtain the
whole alignment objective function and then have

N
: TyT . T
argmyln El tr(YS,-L,-Si Y ) = argm)}ntr(YLY )
1=

(14)

where L = vazl S,-L,-SiT € RVN s the alignment matrix
which: 1) preserves the ranking order information of the intra-
class samples and 2) maximizes the discriminative information
between the interclass samples.

However, different hyperparameters [e.g., k1 in (1) and
ky in (4)] induce different manifolds for encoding different
geometric information, and thus seriously impact the perfor-
mance metrics, e.g., the classification accuracy [5], [6]. In our
EMRP scheme, the hyperparameters ¢, k1 and k, are no trivial
to choose the optimal settings which will affect the objective
function (11). Thus, an automatic manifold approximation
method is valuable to tackle this problem.

C. Ensemble Manifold for Hyperparameters Approximation

It is not easy to directly find the optimal settings of hyperpa-
rameters according to (14). Motivated by the assumption [18]
that the intrinsic manifold can be approximated by a set of
candidate manifolds, we can redefine the alignment matrix

m
k=1
m
LY mk=Lue=0, k=1,...,1 (15)
k=1

where the alignment matrix L is obtained by setting particular
values of hyperparameters. Therefore, we can transform tuning
hyperparameters of L in (14) into the problem of finding the
optimal linear combination of candidate manifolds in (15).

The objective function incorporated with the automatic
manifold approximation can then be written as

m
arg min tr (Y (Z ,ukLk) YT) +p ||,u||2
You k=1

m

st ue=lu=0, k=1,...1
k=1

(16)

where we introduce the regularization term || ,u||2 to smooth
the weights uj; to avoid select only one manifold, and S
is the tradeoff parameter to control the contributions of the
regularization item.

We can utilize the alternating optimization method to obtain
a locally optimal solution of (16).

In particular, given a fixed u, (16) reduces to

m
intr{ Y L)y ). 17
e (Br)7)
It is straightforward to show that (14) is equivalent to
m
intr{ UT X LY )xTu ). 18
(B )e)

We introduce the constraint UUT = I;. The solution can
be obtained by means of the generalized eigenvector problem

m
X(Z ,ukLk)XTu = Ju. (19)
k=1
For a fixed U, the problem is reduced to
m
in tr{ ¥ Lk )yT 2
arg min, r( (Zﬂk ) )+ﬁ el
k=1
m
st ur=1, ux>0. (20)
k=1
We further deduce (20) to
m m m
i tr| Y L*)yT 2
e g, S (v (Z00)17) 43
k=1 k=1 k=1
m
S.t.z,ukzl, wr > 0. 21
k=1
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The coordinate descent algorithm can be adopted to opti-
mize x. With respect to the constraints > ;" ux = 1, ux > 0,
in each iteration, two elements are selected for updating while
the others are fixed. Suppose u; and u; are prepared to be
updated and the others are fixed. In terms of the constraint,
we have

m
uj=1- Z Mk — Mi-

(22)
k=1
k#i,j
Let T'(u;) denote the objective function
m m
T(u)= Y, wmue(YLYT)+8 D pp+uir(YLYT)
k#i,j k#i,J
Hutr(YLIYT) + B(uf + 1)
m m
= > wmue(YLYT) 4B D pp+uir(YLYT)
k#1i,j k#i,J
n .
+ 1= > m—wi |u(yLiYT)
k=1
k#i,j
2
m
o+ 1= D - w (23)
k=1
k#i,j
Take the derivative of T with respect to u;, we have
oT (u; ) .
# =tu(YL'YT) + (- Du(YL/YT)
Hi

m
| 2mi+2 1= D m—pi | (=D

k=1
k#i,j
=uw(YL'Y") —tw(YL/Y") +28(ui — uj) = 0.
(24)
According to (24), we can obtain
1 . .
Wiy (w(reiy™) —w(rL'y™). @)

By considering u} + ,ujf = u; + pj, the updated u? can be
expressed as

(26)

k= # (wr(reiy™) —w(rLiy")) + uzﬂj

With respect to the constraint x; > 0, The solution of (20)
can be divided into the following situations.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 1 Ensemble Manifold Rank Preserving
RDXN .

Training set X = [x1,x2,...,xN] €

Input:  Class label C; € Z"
d: dimension of the reduced space.
~ Orthogonal  projection matrix U =
QUIPNE 1 s, ug) € RPX
Compute the whole alignment matrix according
Step 11 _ o o7 pNxN.
LY =3 SiL;S; € RV,
i=1
Step 2: Given a fixed u, we can compute the projection
P2 matrix U by using (19).
Step 3:  For a fixed U, we optimize u by using (27)—(29).

D) If 1/4pur(YL/YT) —a(YL'YT)) + i +uj/2 < 0,

we have
u; =0
27
[#jZﬂmLﬂj- @7)
2) With respect to the symmetry of i and j, if

(1/4p)((YL'YT)y —aw(YLIYT)) + pi+u;/2 < 0,

we have
=i+ p
s @
3) Otherwise
ui =gz (w(YLIYT) —u(vLYT)) 4 K58 @9)
W= pi+ pj = py

We can use (27)—(29) to optimize the pairs of elements in u
until the objective function (20) does not decrease.

Based on the above discussions, we summarize EMRP
in Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, we first conducted the experiments of human
behavior recognition on the widely used South China Univer-
sity of Technology (SCUT) naturalistic 3-D acceleration-based
activity (SCUT NAA) datasets [50]. Considering the lack of
standard human behavior recognition dataset based on mobile
devices, we collected some human behavior activity samples to
create a dataset by utilizing smart phones equipped with a 3-D
acceleration sensor, namely, naturalistic mobile-devices based
human activity (NMHA) datasets. For each sample, the FFT
coefficients are extracted to represent the raw acceleration data.
We evaluate the performance of the proposed method using
the average recognition rates for each human activity. We also
reported the confusion matrix for better understanding when
the method fails. Further details of the experimental setup and
baseline methods are given below.

A. Datasets

The widely used SCUT NAA dataset is publically available:
http://www.hcii-lab.net/data/. It consists of 1278 samples,
obtained from 44 people (34 males and 10 females).
A tri-axial accelerometer located on a fixed position is used to
gather 10 categories of human activity. Table II [50] lists all the
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TABLE II
DEFINITION OF THE TEN KINDS OF ACTIVITIES [50]

Classes Definition
Relaxing Sitting & doing nothing
Walking Walking 50 m at normal speed
Walking quickly Walking 50 m faster than normal speed
Walking backwards Walking backwards for 50 m
Running Jogging 100 meters

. Moving the feet alternately in the thythm of a
Step walking marching step without advancing
Jumping Jumping for 45s without advancing
Upstairs Ascending stairs
Downstairs Descending stairs
Cycling Cycling with a real bike

human activity categories of the SCUT NAA dataset and their
definitions. Since the class of cycling has only 30 samples,
we did not include this class in the evaluations. In our
experiments, we chose the data collected from accelerometers
placed in trousers pocket (TP), randomly selected p = 20 and
p = 30 samples per human activity category for training, and
used the remaining samples for testing. In the training stage,
we used the training set to learn the orthogonal projection
matrix. In the test stage, we project the test set to the
low-dimensional space using the projection matrix.

Our NMHA dataset for performance evaluation is created as
follows. To collect samples of human activity, we developed
an application for Android-powered smart phones. We selected
ten typical human activities which are walking, step walking,
walking quickly, walking upstairs and walking downstairs,
jumping, running, falling, sit to stand, and stand to sit. We col-
lected the raw acceleration data from 61 subjects and there are
two positions to fix mobile, such as waist pack (WP), TP, and
thus, there are in total two-human activity subdatasets, each
of which contains 610 samples.

To inspect the robustness of the proposed scheme, we
conduct experiments on each of the two human activity
subdatasets and the combination of them. For convenience,
we define as follows.

1) NMHA-TP: Feature set extracted from the acceleration
signals collected from TP.

2) NMHA-WP: Feature set extracted from the acceleration
signals collected from WP.

3) NMHA-TP-WP: The combination of NMHA-TP and
NMHA-WP.

In our experiments on NMHA-TP and NMHA-WP, we
randomly selected p = 20 and p = 30 samples per human
activity category for training, while the remaining samples
were used as the test set. In our experiments on NMHA-
TP-WP, we randomly selected p = 60 samples per human
activity category for training, while the remaining samples
were used as the test set.

Example acceleration signals and activity images are
shown in Fig. 2. The horizontal axis represents the sampling
points and the sampling interval is 0.01 s. The vertical
axis represents the acceleration attributes. For example,
y = 125 means gravity = Og, and each 26 units means 1g,

where g = 9.8 m/s.

B. Frequency Domain Information

After obtaining the raw acceleration signals from the smart
phone, robust feature descriptors are extracted according to the
following steps. First, corresponding to each axis (including
x, y, and z), we extracted FFT coefficients using a 256-point
window. There is a 128-point overlap between consecutive
windows. Second, we only retained the first 24 FFT coeffi-
cients for each sliding window. Finally, all the FFT coefficients
obtained in the second step were concatenated as the frequency
domain information for representing a human activity video.
The raw acceleration signal of each axis contains 1536 sam-
ple points. Thus, we can obtain 11 sampling windows and
11 x 24 x 3 = 792 dimensional coefficients. Note that it is
improper to simply use the original signals for classification,
because of the alignment problem. Another way to handle
this problem is adopting the bag of words model in the FFT
domain. Details about the frequency domain information of
signals recorded in the SCUT NAA dataset are given in [50].

C. Baselines and Performance Evaluation

In this paper, we compare the effectiveness of the
proposed EMRP with five representative algorithms which
are PCA [23], LDA [15], [17], GMSS [41], LSDA [9], and
MFA [48]. These methods are state-of-the-art dimension
reduction methods based on spectral geometry that have
shown their merits in various practical problems.

PCA is a global unsupervised algorithm which is wildly
used in the stage of data preprocessing. LDA is a global
supervised algorithm. Compared with PCA, LDA significantly
improves the performance of the subsequent classification by
exploring the sample label information. However, when the
subspace dimension is less than C — 1 (C is the number of
class), LDA is not optimal. Using the general mean concept
to replace the arithmetic mean used in LDA, GMSS can
significantly reduce this problem and is more robust than
LDA [41]. LSDA and MFA are proposed from the view of
local geometrical structure and duly explore the supervised
information for the subsequent classification.

Before we conduct LDA, GMSS, LSDA, and MFA, PCA is
used as a preprocessing step to make these algorithms avoiding
the small sample size problem. Note that: 1) the number of
dimensions of the original features is much larger than the
number of training samples in LDA [17], so PCA was used
to retain N — C dimensions for training samples to ensure
that within-scatter matrix S, is nonsingular, where N is the
number of training samples and C is the number of classes;
2) according to [48], we retained N — C dimensions to ensure
that X (D? — WP)XT in MFA is nonsingular; and 3) to reduce
the training time, we also applied the PCA step to retain N — 1
dimensions in LSDA and EMRP.

In our EMRP scheme, the hyperparameters include the heat
kernel parameter ¢, the number of closest intraclass samples k;
and the number of closest interclass samples k». In particular,
we created two alignment matrix sets as follows. For the first
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Fig. 2. Example acceleration signals in our NMHA dataset: the dataset contains 10 human activity categoration (walking, step walking, walking quickly,
walking upstairs and walking downstairs, jumping, running, falling, sit to stand, and stand to sit). There are three paired samples shown in this figure. For each
pair, the acceleration signal is shown on the top (The horizontal axis represents the sampling points and the sampling interval is 0.01 s. The vertical axis
represents the acceleration attributes. For example, y = 125 means gravity = Og, and each 26 units means 1g, where g = 9.8 m /s2.) and the corresponding
human activity images is on the bottom. (a) Jumping. (b) Running. (c) Walking.

set, the candidates are are
6 6 0 0
6 6 0 0 =[————05010020€300]
=1—, —,—,=,0,50,100, 200, 300 ’20°10°5 77 ’ ’
[309 20’ 109 5 b b b b b ] 30 O 0 5
ki = {3,5,7}, and k» = {3,5,7}, which led to totally
ki, = 5, and k, = 5, which led to nine candidate 81 candidate alignment matrices. Note that # can be esti-

alignment matrices. For the second set, the candidates mated by the inverse of 1 /n? :’ =t llxi —x j||2. We varied all
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Fig. 3. We compare EMRP with PCA, LSDA, MFA, GMSS, and LDA on the SCUT NAA dataset. The NN classifier is used for recognition. In each
subfigure, the x-coordinate is the number of the dimension of all the algorithms on the test set and the y-coordinate is the average recognition. (a) p = 20.
(b) p = 30.
TABLE III
BEST AVERAGE RECOGNITION RATES OF SI1X ALGORITHMS ON THE SCUT NAA DATASET
p=20 p=30
Classes PCA | LDA |LSDA | MFA | GMSS EMgRP' El\glfp' PCA | LDA | LSDA | MFA | GMSS EMQRP' El\glfp'
Jumping 0.825 | 0.863 | 0.871 | 0.854 | 0.867 | 0.842 | 0.842 | 0.836 | 0.864 | 0.857 | 0.843 | 0.850 | 0.829 | 0.829
Walking 0.504 | 0.508 | 0.529 | 0.558 | 0.567 | 0.608 | 0.592 | 0.507 | 0.493 0.493 0.514 | 0.514 | 0.550 | 0.564
Walking 0.639 | 0.617 | 0.630 | 0.604 | 0.709 | 0.696 | 0.709 | 0.623 | 0.677 | 0.677 | 0.615 | 0.746 | 0.723 0.723
Backwords
WalkingQuickly| 0.575 | 0.663 | 0.683 | 0.667 | 0.638 | 0.758 | 0.763 | 0.693 | 0.686 | 0.729 | 0.736 | 0.729 | 0.829 | 0.821
Running 0.842 | 0.842 | 0.846 | 0.879 | 0.867 | 0.963 | 0.963 | 0.864 | 0.850 | 0.871 0.921 0.879 | 0.964 | 0.971
Relaxing 1.000 | 1.000 | 0.996 | 1.000 | 1.000 | 0.992 | 0.992 | 1.000 1.000 1.000 1.000 1.000 | 0.993 0.993
Downstairs 0.858 | 0.746 | 0.792 | 0.821 | 0.846 | 0.725 | 0.738 | 0.879 | 0.843 0.914 | 0.879 | 0.800 | 0.807 | 0.807
Upstairs 0.704 | 0.588 | 0.588 | 0.629 | 0.533 | 0.604 | 0.604 | 0.700 | 0.536 | 0.593 0.614 | 0.464 | 0.614 | 0.614
Step walking | 0.633 | 0.796 | 0.821 | 0.779 | 0.879 | 0.813 | 0.821 | 0.714 | 0.850 | 0.829 | 0.829 | 0914 | 0.757 | 0.786
Average 0.732 | 0.736 | 0.751 | 0.755 | 0.767 | 0.778 | 0.780 | 0.758 | 0.756 | 0.774 | 0.774 | 0.766 | 0.785 0.791
accuracy (30 | ® (0 ) (5 1 @1 | 28 | 37) (8 (7 (13) (8 (34) (36)

(The number in the parentheses is the reduced dimensions.)

hyperparameters in a larger range to obtain a robust approx-
imation. According to the different hyperparameter candidate
sets, i.e., the first and the second sets, we named the proposed
algorithms EMRP-9 and EMRP-81, respectively.

In addition, considering to unify the classification stage,
kNN classifier (k = 1) was used to cooperate with various
spectral geometry algorithms. These trials were independently
repeated for 10 times and the average accuracy for each class
was reported for performance evaluation.

D. Experimental Results and Analysis

In Fig. 3, we compare the proposed EMRP with PCA,
LDA, GMSS, LSDA, and MFA on the SCUT NAA dataset.
In each subfigure, the x-coordinate is the number of dimen-
sions of subspace and the y-coordinate is the average accuracy.
In Table III, we reported the best average recognition rates of
six algorithms and the corresponding dimension on the SCUT
NAA dataset.

In Fig. 4, we compare the proposed EMRP with PCA,
LDA, GMSS, LSDA, and MFA on the NMHA-TP dataset.
In Table IV, we reported the best average recognition rates
of six algorithms and the corresponding dimension on the
NMHA-TP dataset.

In Fig. 5, we compare the proposed EMRP with PCA,
LDA, GMSS, LSDA, and MFA on the NMHA-WP dataset.
In Table V, we reported the best average recognition rates
of six algorithms and the corresponding dimension on the
NMHA-WP dataset.

In Fig. 6, we compare the proposed EMRP with PCA,
LDA, GMSS, LSDA, and MFA on the NMHA-TP-WP
dataset. In Table VI, we reported the best average recognition
rates of six algorithms and the corresponding dimension
on the NMHA-TP-WP dataset. In addition, under the same
experimental setting, the NN classifier has been replaced
with the SVM classifier (using the RBF kernel). We can
observe that the best accuracy is achieved by EMRP-81
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Fig. 4. We compare EMRP with PCA, LSDA, MFA, GMSS, and LDA on the NMHA-TP dataset. The NN classifier is used for recognition. In each subfigure,
the x-coordinate is the number of the dimension of all the algorithms on the test set and the y-coordinate is the average recognition. (a) p = 20. (b) p = 30.

TABLE IV
BEST AVERAGE RECOGNITION RATES OF SIX ALGORITHMS ON THE NMHA-TP DATASET

p=20 p=30
Classes PCA | LDA | LSDA | MFA | GMSS EMgRP' El\glfp' PCA | LDA | LSDA | MFA | GMSS EMQRP' El\glfp'
Falling 0.717 | 0.583 | 0.732 | 0.637 | 0.629 | 0.761 | 0.732 | 0.758 0.671 0.729 0.723 0.739 0.745 0.806
Jumping 0.805 | 0.754 | 0.663 | 0.629 | 0.717 | 0.824 | 0.827 | 0.845 0.794 0.765 0.752 0.777 0.842 0.858
Running 0.824 | 0.785 | 0.715 | 0.741 | 0.771 | 0.868 | 0.880 | 0.881 0.835 0.839 0.810 0.819 0.939 0.948
sit to stand 0.500 | 0.515 | 0.620 | 0.551 | 0.605 | 0.507 | 0.534 | 0.587 0.574 0.635 0.655 0.629 0.597 0.552
stand to sit 0.534 | 0.500 | 0.700 | 0.654 | 0.732 | 0.629 | 0.663 | 0.600 0.603 0.648 0.674 0.700 0.697 0.742
Walking 0.571 | 0.722 | 0.734 | 0.790 | 0.793 | 0.700 | 0.739 | 0.658 0.768 0.758 0.784 0.806 0.716 0.732
Step walking | 0.717 | 0.839 | 0.802 | 0.868 | 0.844 | 0.839 | 0.822 | 0.819 0919 0919 0.926 0.871 0.871 0.871
Walking quickly| 0.588 | 0.622 | 0.559 | 0.578 | 0.529 | 0.637 | 0.651 | 0.587 0.658 0.671 0.671 0.600 0.661 0.700
Downstairs 0.805 | 0.893 | 0.783 | 0.817 | 0.815 | 0.912 | 0.873 | 0.919 0.839 0.865 0.839 0.832 0.945 0.903
Upstairs 0.790 | 0.776 | 0.832 | 0.822 | 0.824 | 0.871 | 0.854 | 0.839 0.852 0.832 0.839 0.832 0.845 0.819
Average 0.685 | 0.699 | 0.714 | 0.710 | 0.726 | 0.754 | 0.758 | 0.749 0.751 0.766 0.767 0.761 0.785 0.793
accuracy (12) (8) (10) (20) 9) (13) (26) 21) 9) 9) (24) 9) (12) (35)
(The number in the parentheses is the reduced dimensions.)
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in Table VII. It shows that the SVM classifier can further
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Fig. 5. We compare EMRP with PCA, LSDA, MFA, GMSS, and LDA on the NMHA-WP dataset. The NN classifier is used for recognition. In each subfigure,
the x-coordinate is the number of the dimension of all the algorithms on the test set and the y-coordinate is the average recognition. (a) p = 20. (b) p = 30.

Fig. 7 shows the classification confusion matrix of EMRP

improve the accuracy of accelerometer-based human activity for one test split of the NMHA-TP-WP dataset. All correct
predications are located in the diagonal of the matrix. It is

recognition.
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TABLE V
BEST AVERAGE RECOGNITION RATES OF SIX ALGORITHMS ON THE NMHA-WP DATASET

11

p=20 p=30
Classes PCA | LDA |LSDA | MFA | GMSS EMgRP ) El\glfp | PCA | LDA | LSDA | MFA | GMSS EMgRP . El\glfP .
Falling 0.805 | 0.776 | 0.805 | 0.781 | 0.822 | 0.873 | 0.861 | 0.874 | 0.897 | 0.894 | 0.800 | 0.855 | 0.897 | 0.897
Jumping 0.658 | 0.698 | 0.695 | 0.627 | 0.627 | 0.739 | 0.746 | 0.729 | 0.761 | 0.752 | 0.694 | 0.687 | 0.787 | 0.803
Running 0.805 | 0.849 | 0.849 | 0.849 | 0.817 | 0.905 | 0.907 | 0.829 | 0.858 | 0.865 | 0.904 | 0.871 | 0.939 | 0.939
sittostand | 0.590 | 0.624 | 0.617 | 0.640 | 0.680 | 0.688 | 0.688 | 0.635 | 0.639 | 0.639 | 0.700 | 0.623 | 0.668 | 0.690
stand tosit | 0.614 | 0.605 | 0.615 | 0.598 | 0.668 | 0.588 | 0.590 | 0.619 | 0.574 | 0.606 | 0.678 | 0.671 | 0.642 | 0.606
Walking 0.563 | 0.568 | 0.600 | 0.727 | 0.739 | 0.607 | 0.602 | 0.622 | 0.597 | 0.594 | 0.733 | 0.768 | 0.629 | 0.668
Step walking | 0.961 | 0.927 | 0.944 | 0.920 | 0.929 | 0.966 | 0.973 | 0.961 | 0.913 | 0.965 | 0.942 | 0.948 | 0.958 | 0.971
Walking quickly| 0.561 | 0.595 | 0.602 | 0.620 | 0.634 | 0.615 | 0.627 | 0.600 | 0.665 | 0.694 | 0.636 | 0.687 | 0.700 | 0.739
Downstairs | 0.739 | 0.751 | 0.783 | 0.674 | 0.644 | 0.783 | 0.785 | 0.738 | 0.748 | 0.742 | 0.762 | 0.597 | 0.732 | 0.690
Upstairs 0.724 | 0.668 | 0.683 | 0.747 | 0.720 | 0.715 | 0.727 | 0.735 | 0.729 | 0.777 | 0.733 | 0.726 | 0.710 | 0.716
Average 0.702 | 0.706 | 0.719 | 0.718 | 0.728 | 0.747 | 0.751 | 0.734 | 0.738 | 0.753 | 0.758 | 0.743 | 0.766 | 0.772
accuracy a9 | O |an | e | © | aa | a9 | Gy 9) as | e | © 14) | ©8)
(The number in the parentheses is the reduced dimensions.)
NMHA-TP-WP TABLE VI
o e BEST AVERAGE RECOGNITION RATES OF STX ALGORITHMS ON THE
NMHA-TP-WP DATASET
aas
(2]
ﬁs p=060
5 Classes | PCA | LDA |LSDA | MFA |GMSS EMQRP' El\glfp'
c Falling | 0.770 | 0.706 | 0.771 | 0.671 | 0.692 | 0.739 | 0.785
o S Jumping | 0.849 | 0.860 | 0.850 | 0.795 | 0.821 | 0.910 | 0.911
¢ 06 e EVRPS || Running | 0.901 | 0.876 | 0.868 | 0.898 | 0.898 | 0.953 | 0.955
' ——PCA sit to stand | 0.588 | 0.584 | 0.558 | 0.611 | 0.485 | 0.606 | 0.585
] ¢ LSDA stand to sit | 0.619 | 0.608 | 0.658 | 0.671 | 0.440 | 0.702 | 0.695
0.55 1 —*—GMSS | -
/l A Walking | 0.682 | 0.663 | 0.706 | 0.763 | 0.768 | 0.768 | 0.792
PO S . Wiﬁfﬁl o | 0859 | 0.882 | 0.965 | 0.932 | 0950 | 0.924 | 0.937
5 10 15 20 25 30 35 40 45 50 -
Reduced dimensions Walking | c4s | 0.663 | 0.687 | 0.711 | 0.718 | 0.719 | 0.731
quickly
Fig. 6. We compare EMRP with PCA, LSDA, MFA, GMSS, and LDA on Downstairs | 0.790 | 0.840 | 0.785 | 0.792 | 0.879 | 0.823 | 0.834
the NMHA-TP-WP dataset. Upstairs | 0.719 | 0.748 | 0.782 | 0.732 | 0.792 | 0.718 | 0.748
Average | 0.742 | 0.743 | 0.763 | 0.758 | 0.744 | 0.786 | 0.797
convenient to inspect the picture for classification errors, as accuracy | (16) | ©) | (2) | GO | ©) | @5 | G3)

they are nonzero values listed outside the diagonal. It is not
surprising that confusions occur between sit to stand and stand
to sit, because mobiles are not fixed in the body of volunteers
and the mobiles position directly impacts the recognition
accuracy of these two human activities. From the confusion
matrix, we can also find that falling is confused with stand to
sit, because there are very similar.

The main observations from the experiment of EMRP can
be summarized as follows.

1) EMRP, LSDA, and MFA are promising solutions,
because they all consider the geometric information
in a local patch intuitively. EMRP outperforms others,
because it aims to find the balance of the intraclass
nearest neighborhood ranks and the interclass nearest
neighborhood ranks, which is important for improving
the accuracy of human behavior categorization.

EMRP-81 significantly improves the recognition
accuracy and obtains the best average recognition
rates in our human activity recognition experiments.

2)

(The number in the parentheses is the reduced dimensions.)

TABLE VII

BEST AVERAGE RECOGNITION RATES USING SVM CLASSIFIER

PCA | LDA |LSDA| MFA | GMSS EMQRP . Ehgllu)
AVerage | 76010.763(0.785(0.778| 0.772 | 0.802 | 0.813
accuracy

3)

This demonstrates the robustness and effectiveness
of EMRP for human behavior categorization task.
This justifies that EMRP-based algorithms can learn a
suitable linear combination of the alignment matrices
for obtaining better system performance.

Figs. 3 and 5 demonstrate that the recognition rates
of the proposed EMRP decrease with the increase of
reduced dimensions, after the optimal value of dimen-
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7. EMREP classification confusion matrix for one test split on the NMHA-

TP-WP dataset. The NN classifier is used for recognition.

sion is reached. This is because the number of training
samples is much smaller than the dimension of feature
vectors.

V. CONCLUSION

In this paper, a new spectral geometry algorithm termed
EMRP is proposed for acceleration-based human activity
recognition. By considering the concentration of the measure
phenomenon, EMRP preserves the rank order information in
local patches. By maximizing the margin between samples
of different classes, EMRP retains the most discriminative
information. Especially, EMRP finds the optimal linear com-
bination of the alignment matrices to approximate the intrinsic
manifold lied in the data.

Compared to the classical spectral geometry algorithms,
such as PCA, LDA, GMSS, LSDA, and MFA, EMRP
shows many attractive and competitive properties to measure

the

similarity between different acceleration signals. In the

acceleration-based human activity recognition application, the
newly proposed nonmetric scheme based on EMRP is superior
to the above methods in terms of recognition accuracy.
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