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a b s t r a c t

It is usually difficult to find the optimal low dimensional subspace for face recognition. Patch alignment

framework (PAF) is an important systematic framework that can be applied to understand the common

thought and essential differences of a numerous dimensionality reduction algorithms, e.g., principal com-

ponent analysis, linear discriminant analysis and locally linear embedding and ISOMAP. These algorithms do

we present a new dimensionality reduction algorithm based on PAF, termed the discriminative information

preservation based dimensionality reduction or DIP for short. First, DIP models the local geometry of intra-

class samples by using Locality preserving projection (LPP) rebuilt upon PAF. Second, it models the discrimi-

native information of inter-class samples by maximizing the margin. Thoroughly experimental evidence on

several public face datasets suggests the effectiveness of DIP compared with the popular algorithms.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Dimensionality reduction, one of the fundamental problems in
face recognition finds a projection that transforms samples from a
high dimensional space to a low dimensional subspace for the
subsequent classification. It aims to reveal a succinct and effective
representation of the distribution of samples in the original space.
Over the past few decades, many dimensionality reduction algo-
rithms have been proposed [2,8,11,15,23,24,30,32], since it can be
applied to various applications, such as face recognition [25,27],
scene analysis [6,26], object categorization [10,33,34] and bio-
metrics [35]. These algorithms can be grouped into two categories:
globally linear dimensionality reduction algorithms and manifold
learning based dimensionality reduction algorithms. In recently
years, there are a kind of piece-wise linear algorithm [12,13]. These
methods approximate a nonlinear model by using piece-wise linear
sub-models. The algorithms can be treated as a combination of
globally linear dimensionality reduction algorithms and manifold
learning based dimensionality.

Principal Component Analysis (PCA) [11] and Linear Discriminant
Analysis (LDA) [8] are the representative globally linear dimension-
ality reduction algorithms. PCA is an unsupervised learning algo-
rithm. By maximizing the trace of the total scatter matrix in the
projected low dimensional subspace, it can optimally reconstruct
Gaussian distributed data. Since it does not utilize the class label
information, we do not apply it to classification task in general. LDA
is the typical traditional supervised classification algorithm that
ll rights reserved.

,

utilizes the class label information. It is popular in face recognition
[3] and other pattern classification tasks [17]. However, traditional
LDA has the following drawbacks. First, it ignores the local structure
of samples, so it fails to discover the nonlinear structure hidden
in the high dimensional data. Second, LDA is confronted with the
small sample size (SSS) problem [22]. A good model approximation
usually requires a large number of training samples. Third, since the
scatter matrix is almost always singular, it suffers from ill-posed
problem for computing the projection matrix in LDA.

Manifold learning based dimensionality reduction algorithms
aim to find the intrinsic structure of a set of samples embedded in
a high dimensional ambient space [2,14,19,23,29,32]. Laplacian
eigenmaps (LE) [2] is a popular unsupervised non-linear classifi-
cation algorithm. It builds an undirected weighted graph to
preserve the sample relationship information in terms of distance.
The undirected weighted graph incorporates the neighborhood
information of pairwise samples in the training set. LE and other
important unsupervised learning algorithms suffer from the
out of sample problem [4], e.g., ISOMAP [29] and locally linear
embedding (LLE) [23]. They are difficult to find low dimensional
embeddings of new test samples. Locality preserving projection
(LPP) [14] is the linear approximation of LE and can compute the
low dimensional embeddings for new test points. LPP, however,
has one important problem: it does not utilize the class label
information, so it is not optimal for classification tasks.

Marginal Fisher’s Analysis (MFA) [30] is a supervised manifold
learning algorithm. By using the inter-class marginal samples,
MFA conducts the penalty graph to keep the separability of the
inter-class. However, MFA ignores the discriminative information
of non-marginal samples and faces the ill-posed problem.

Discriminative locality alignment (DLA) [32] is a new supervised
manifold learning algorithm. DLA operates in two main stages to
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overcome the above problems of LDA. In the first stage, DLA aims to
preserve the discriminative information in a local patch through the
classification optimization criteria that the distance between the
intra-class samples will be as small as possible and the distance
between the inter-class samples will be as large as possible. In the
second stage, DLA integrate all the weighted part optimization to
form a global subspace structure. However, DLA is not well suit to
preservation of the pairwise measurements in the intra-class samples.

Patch Alignment Framework (PAF) [31] was proposed to
understand the common thought and essential difference of these
different algorithms. Under the framework of PAF, existing algo-
rithms can be divided into two steps, part optimization and whole
alignment. The step of part optimization reveals the intrinsic
differences of these algorithms and the step of whole alignment is
almost identical in all the dimensionality reduction algorithms.

In this paper, we present Discriminative Information Preserva-
tion (DIP) that is a new dimensionality reduction algorithm devel-
oped under the framework of PAF. It not only overcomes all the
aforementioned problems in conventional LDA, but also enhances
the performance of discriminative information extracted from the
local patches. DIP operates in the following two steps. First, DIP
models the local geometry of intra-class samples by using LPP
rebuilt on PAF. Second, the discriminative information of inter-class
samples is modeled by maximizing the margin. DIP has three
advantages: (1) it focuses on the local patch constructed by each
sample and neighborhood, and therefore the non-linearity of the
distribution of samples is well modeled, (2) by maximizing the
margin between the inter-class samples on the patch, discrimina-
tive information is better preserved than other algorithms, and
(3) it does not need to compute the inverse of a matrix, and
therefore it dose not have the ill-posed problem. In addition, DIP is
extended to the semi-supervised DIP (SDIP) by incorporating the
unlabeled samples distribution information.

The rest of the paper is organized as follows: Section 2 details the
proposed DIP algorithm and extends DIP to semi-supervised (SDIP).
In Section 3, we evaluate DIP and SDIP. Finally, concluding remarks
and suggestions for future work are presented in Section 4.
2. Discriminative information preservation

Consider the problem of discriminative dimension reduction.
Denote a set of training samples in a high dimensional space RD by
X ¼ ½x1,x2, . . . ,xN�ARD�N , each of which has a label CiAZn. The
objective of discriminative dimension reduction is to find a linear
mapping UARD� d from the high dimensional space RD to a low
dimensional subspace Rd, with doD. Thus, we can obtain the
corresponding low dimensional representation Y ¼UT X ¼ ½y1,
y2, . . . ,yN�ARd�N .

Under the framework of patch alignment framework (PAF), we
present a new discriminative dimension reduction tool, namely,
Discriminative Information Preservation (DIP). PAF offers a con-
venient way to encode the local geometric information of the
intra-class samples and discriminative information of the inter-
class samples. DIP models a new structure that preserves the
pairwise relationship of the intra-class samples by using the
classification optimization criterion and transfers this structure
from local coordinate system to an aligned coordinate system
ruled by PAF. The pairwise relationship in DIP refers to an
integration of local geometry and discriminative information.

2.1. Part optimization

Given a sample xi, we can divide its K(¼k1þk2) nearest
neighbor samples into two groups. The first group xi1 ,xi2 ,:::,x

ik1

contains k1 samples in the same class with respect to xi, i.e., the
intra-class samples. The second group xi1 ,xi2 ,:::,xik2
contains k2

samples from different classes with respect to xi, i.e., the inter-
class samples. Thus, the local patch for xi is Xi ¼ ½xi,xi1

,x
i2

,:::,x
ik1 ,

xi1 ,xi2 ,:::,xik2
�. Suppose the corresponding low dimensional repre-

sentation is Yi ¼ ½yi,yi1
,y

i2
,:::,y

ik1 ,yi1
,yi2

,:::,yik2
�, according to PAF, the

part optimization can be formulated as

arg min tr
Yi

ðYiLiYi
T
Þ ð1Þ

where LiARðKþ1ÞðKþ1Þ implies a particular optimization criterion.
In order to encode the local geometry of intra-class samples

and the discriminative information of inter-class samples, DIP
characterizes three specific properties into Li: (1) the intra-class
samples in the high-dimensional space are close to each other in
the learned low dimensional space, (2) the inter-class samples are
well separable in the learned low-dimensional space, and (3) a
trade-off parameter balances the two types of information.

2.1.1. Local geometry preservation (LGP)

The intra-class local geometry is effective for classification and
we use LPP to preserve such information. For patch Xi, we use
Loc(yi) to define the intra-class local geometry, i.e.,

LocðyiÞ ¼
Xk1

j ¼ 1

Jyi�y
ij
J2
ðwiÞj ð2Þ

where ðwiÞj ¼ expð�Jxi�x
ij
J2=tÞ if xiANpðxij

Þ, otherwise 0, accord-
ing to Rosenberg [21]. We can also choose (wi)j¼1 if xiANpðxij

Þ.
In order to use PAF to encode the above LPP based local geometry,

we rewrite (2) as

LocðyiÞ ¼
Xk1

j ¼ 1

Jyi�y
ij
J2
ðwiÞj

¼ tr

ðyi�y
i1
Þ
T

^

ðyi�y
ij
Þ
T

2
664

3
775½yi�y

i1
, . . . ,yi�y

ij
�diagðwiÞ

8>><
>>:

9>>=
>>;

¼ tr ½yi�y
i1

, . . . ,yi�y
ij
�diagðwiÞ

ðyi�yi1 Þ
T

^

ðyi�y
ij
Þ
T

2
664

3
775

8>><
>>:

9>>=
>>;

¼ tr YLocðiÞ

�eT
k1

Ik1

" #
diagðwiÞ½ �ek1 Ik1 �YLocðiÞ

T

( )

¼ trðYLocðiÞLLocðiÞY
T
LocðiÞÞ, ð3Þ

where tr(?)is the trace operator, ek1 ¼ ½1, . . . ,1�T ARk1,

Ik1 ¼ diagð1, . . . ,1
zfflfflfflffl}|fflfflfflffl{k1

Þ,

YLocðiÞ ¼ ½yi,yi1
, . . . ,y

ik1 �

and

LLocðiÞ ¼
�eT

k1

Ik1

" #
diagðwiÞ½ �ek1 Ik1 �ARðk1þ1Þðk1þ1Þ:

2.1.2. Discriminative information preservation (DIP)

To preserve the discriminative information for each patch Xi,
we maximize the margin that is the average difference between
the center of the intra-class samples and the inter-class samples,
which is defined by

Mar0ðyiÞ ¼
1

k2

Xk2

p ¼ 1

����
���� 1

k1þ1
ðyiþ

Xk1

j ¼ 1

y
ij
Þ�yip

����
����
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¼
1

k2

���� k2

k1þ1
ðyiþ

Xk1

j ¼ 1

y
ij
Þ�
Xk2

p ¼ 1

yip

����
����

¼

����
���� 1

k1þ1
ðyiþ

Xk1

j ¼ 1

y
ij
Þ�

1

k2

Xk2

p ¼ 1

yip

����
����: ð4Þ

In order to use PAF to encode the above margin maximization
based discriminative information, we redefine (4) as

MarðyiÞ ¼

�����
����� 1

k1þ1
yiþ

Xk1

j ¼ 1

y
ij

0
@

1
A� 1

k2

Xk2

p ¼ 1

yip

�����
�����
2

¼ trðYMarðiÞviv
T
i YT

MarðiÞÞ ¼ trðYMarðiÞLMarðiÞY
T
MarðiÞÞ, ð5Þ

wherein

vi ¼ 1=ðk1þ1Þ, . . . ,1=ðk1þ1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{k1þ1

,�1=k2, . . . ,�1=k2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{k2

2
664

3
775

T

,

YMarðiÞ ¼ ½yi,yi1
, . . . ,y

ik1 ,yi1
, . . . ,yik2

�,

and LMarðiÞðiÞ ¼ viv
T
i ARðk1þk2þ1Þðk1þk2þ1Þ.

2.1.3. Information fusion

By combining (2) and (4) via a trade-off parameter g, we can
encode both the local geometry and the discriminative informa-
tion, i.e.,

arg min
yi

ðLocðyiÞ�gMarðyiÞÞ: ð6Þ

After plugging (3) and (5), the objective function (6) turns to

arg min
Yi

ðtrðYLocðiÞLLocðiÞY
T
LocðiÞÞ�g trðYMarðiÞLMarðiÞY

T
MarðiÞÞÞ: ð7Þ

2.2. Whole alignment

Suppose the low-dimensional representation of the patch Xi is
Yi. According to PAF, we will unify all the low dimensional
representations Yi into a consistent coordinate. The coordinate
of Yi is selected from the global coordinate Y¼[y1,y2,y,yn]ARd�N.
This process requires a selection matrix Si that selects samples to
form the patch Yi¼[yi,yi1,y,yiK]ARd(Kþ1), i.e.,

Yi ¼ YSi: ð8Þ

Let Fi ¼ fi,i1, . . . ,iKg be the index set. The selection matrix Si is
defined by

ðSiÞpq ¼
1, If p¼ Fifqg

0, else

(
ð9Þ

We define two different selection matrices SLoc(i) whose index
set is Fi ¼ fi,i

1, . . . ,ik1 g, and SMar(i) whose index set is Fi ¼ fi,i
1,

i2, . . . ,ik1 ,i1,i2, . . . ,ik2
g. Thus, YLoc(i) and YMar(i) can be rewritten as

YLocðiÞ ¼ YSLocðiÞ ð10Þ

and

YMarðiÞ ¼ YSMarðiÞ, ð11Þ

respectively.
According to (10) and (11), the part optimization (7) can be

rewritten as

arg min
Y
ðtrðYSLocðiÞLLocðiÞS

T
LocðiÞY

T
Þ�gtrðYSMarðiÞLMarðiÞS

T
MarðiÞY

T
ÞÞ: ð12Þ

By summing over all the part optimizations defined in (12), we
have the whole alignment

arg min
Y

XN

i ¼ 1

ðtrðYSLocðiÞLLocðiÞS
T
LocðiÞY

T
Þ�gtrðYSMarðiÞLMarðiÞS

T
MarðiÞY

T
ÞÞ: ð13Þ
It can be simplified according to

arg min
Y

XN

i ¼ 1

ðtrðYSLocðiÞLLocðiÞS
T
LocðiÞY

T
Þ�gtrðYSMarðiÞLMarðiÞS

T
MarðiÞY

T
ÞÞ

¼ arg min
Y

tr Y
XN

i ¼ 1

ðSLocðiÞLLocðiÞS
T
LocðiÞÞ

 !
YT

 !

�tr Y g
XN

i ¼ 1

ðSMarðiÞLMarðiÞS
T
MarðiÞÞ

 !
YT

 !

¼ arg min
Y

tr Y
XN

i ¼ 1

ðSLocðiÞLLocðiÞS
T
LocðiÞÞ

  

�g
XN

i ¼ 1

ðSMarðiÞLMarðiÞS
T
MarðiÞÞ

!
YT

!

¼ arg min
Y

trðYLYT
Þ, ð14Þ

where

L¼
XN

i ¼ 1

ðSLocðiÞLLocðiÞS
T
LocðiÞÞ�g

XN

i ¼ 1

ðSMarðiÞLMarðiÞS
T
MarðiÞÞARN�N

is the whole alignment matrix encoding both the local geometry
of the intra-class samples and the discriminative information of
the inter-class samples. If the initialization of L is set to zero, we
can obtain it by using an iterative procedure

LðFi,FiÞ’LðFi,FiÞþLLocðiÞ�gLMarðiÞ, ð15Þ

where i¼ 1, . . . ,N. It is worth to note that the calculations of
(3) and (5) show the whole alignment matrix is symmetric.

2.3. Low dimensional embedding

To uniquely determine Y, we impose YYT
¼ Id on (14), wherein

Id is a d� d identity matrix, i.e.,

arg min
Y
ðYLYT

Þ

s:t: YYT
¼ Id: ð16Þ

By using the Lagrange multiplier method [16], (16) can be
transformed to a generalized eigenvalue problem and thus Y is
formed by d eigenvectors associated with d smallest eigenvalues
of L.

2.4. Linear approximation

The above method suffers from the out of sample problem [4].
By applying linearization, we can explore an explicit embedding
for a sample. For linearization, we can simply impose a constraint
UTU¼ Id on (14) to determine the projection matrix U according
to Y¼UTX, wherein Id is a d�d identity matrix. Thus (14) is
transformed to (17)

arg min
Y

trðUT XLXT UÞ

s:t: UT U ¼ Id: ð17Þ

Similar to (16), it can be transformed to a generalized eigen-
value problem and U is given by d eigenvectors associated with
d smallest eigenvalues of XLXT. In practice, PCA can be applied
to the original high dimensional data for removing the noise.
The main steps of DIP with linearization are summarized in
Table 1.

2.5. Semi-supervised Discriminative Information Preserving (SDIP)

It has been widely acknowledged that unlabeled samples are
useful to enhance the classification performance [5]. In practice,
it is possible to collect a large number of unlabeled samples and



Table 1
DIP with linearization.

Algorithm: Linear Discriminative Information Preserving (LDIP)

Input: Training set X ¼ ½x1 ,x2 ,:::,xn�ARD�N;

Class label vector C ¼ ½c1 ,c2 , . . . ,cn�
T ;

d: dimension of the reduced space.

Output: Linear projection matrix U ¼ ½u1 ,u2 , . . . ,ud�ARD�d

Step1: Optional PCA reconstruction of original training set X, and the PCA projection matrix is UPCA;

Step 2: Part optimization: construct N patches for the training set according to the models of LGP and DIP, calculate the matrixes LLoc(i) and LMar(i) for each patch

using (3) and (5);

Step 3: Whole alignment: sum over all the patches in a global coordinate, computing the whole alignment matrix L using (15);

Step 4: Compute project matrix UDIP whose column vectors are the d eigenvectors of XLXT associated with d smallest eigenvalues.

Step 5: Return the final projection matrix U¼UPCAUDIP.
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the sample distribution can be deemed as a prior to improve the
decision making. Therefore, by taking unlabeled samples into account,
we improve DIP by proposing a semi-supervised extension, or
semi-supervised DIP (SDIP) which preserves the local geometry of
both the labeled and unlabeled samples. Similar to DIP, SDIP
maximizes the margin of different classes.

We attach the unlabeled samples to the original data set, and thus
we have X ¼ ½x1, . . . ,xN ,xNþ1, . . . ,xNþNU

�ARDðNþNU Þ, wherein the first
N samples are labeled, and the rest NU samples are unlabeled. The
modeling of the labeled samples in SDIP is the same as that in DIP. In
SDIP, the neighborhood connection between each unlabeled sample
xi,i¼Nþ1, . . . ,NþNU and its nearest neighbors xi1 ,:::,xiks

are
expected to be remained in the low dimensional subspace. Let
Xi ¼ ½xi,xi1 , . . . ,xiks

� denote the ith patch of the unlabeled samples,
and the affiliation index set is Fi

U
¼ i,i1, . . . ,iks

� �
. Therefore, the part

optimization for the unlabeled samples is defined by

arg min
yi

Xks

j ¼ 1

Jyi�yij
J2
ðoiÞj, ð18Þ

where yij
,j¼1,y,ks, are ks neighbor samples including both the

labeled and the unlabeled samples in the local patch; and (oi)j is the
weighting vector calculated by the heat kernel ðoiÞj ¼ exp

ð�Jxi�xijJ
2=tÞ.

Similar to (3), (18) can be rewritten as

UnðyiÞ ¼
Xks

j ¼ 1

Jyi�y
ij
J2
ðoiÞj

¼ tr YUnðiÞ

�eT
ks

Iks

" #
diagðoiÞ½ �eks Iks �YUnðiÞ

T

( )

¼ trðYUnðiÞLUnðiÞY
T
UnðiÞÞ, ð19Þ

where

LUnðiÞ ¼
�eT

ks

Iks

" #
diagðoiÞ½ �eks Iks �ARðksþ1Þðksþ1Þ,

eks ¼ ½1, . . . ,1�T ARks, and Ik1 ¼ diag 1, . . . ,1
zfflfflfflffl}|fflfflfflffl{ks

0
@

1
A

It can be treated as a regularization item for modeling the data
distribution prior.

Since the number of labeled samples is usually much smaller
than that of unlabeled samples, we only use unlabeled samples to
form the regularizer for learning the marginal distribution.

Therefore, SDIP can be written as

arg min
Yi

XN

i ¼ 1

trðYLocðiÞLLocðiÞY
T
LocðiÞÞ

�g trðYMarðiÞLMarðiÞY
T
MarðiÞÞ

0
@

1
A

0
@

þb
XNþNU

i ¼ Nþ1

trðYUnðiÞLUnðiÞY
T
UnðiÞÞ

!
: ð20Þ
We define a selection matrix SUn(i) for unlabeled samples and
rewritten YUn(i) as

YUnðiÞ ¼ YSUnðiÞ: ð21Þ

Therefore, (20) can be rewritten as

arg min
Y

XN

i ¼ 1

trðYSLocðiÞLLocðiÞS
T
LocðiÞY

T
Þ

�gtrðYSMarðiÞLMarðiÞS
T
MarðiÞY

T
Þ

0
@

1
A

0
@

þb
XNþNU

i ¼ Nþ1

trðYSUnðiÞLUnðiÞS
T
UnðiÞY

T
Þ

!

¼ arg min
Y

tr Y
XN

i ¼ 1

SLocðiÞLLocðiÞS
T
LocðiÞ

�gSMarðiÞLMarðiÞS
T
MarðiÞ

0
@

1
A

0
@

0
@

þ
XNþNU

i ¼ Nþ1

bSUnðiÞLUnðiÞS
T
UnðiÞ

!
YT

!

¼ arg min
Y

trðYLSYÞ, ð22Þ

where

LS
¼

XN

i ¼ 1

SLocðiÞLLocðiÞS
T
LocðiÞ

�gSMarðiÞLMarðiÞS
T
MarðiÞ

0
@

1
A

0
@
þ

XNþNU

i ¼ Nþ1

bSUnðiÞLUnðiÞS
T
UnðiÞ

!
ARðNþNU ÞðNþNU Þ

is the whole alignment matrix of SDIP, and b is a trade-off
parameter to balance the supervised information and the unsu-
pervised information.

This LS can be updated according to

LS
ðFi,FiÞ’LS

ðFi,FiÞþLLocðiÞ�gLMarðiÞ for i¼ 1, . . . ,N,

LS
ðFU

i ,FU
i iÞ’LS

ðFU
i ,FU

i ÞþbLUnðiÞ for i¼Nþ1, . . . ,NþNU ,

8<
:

ð23Þ

and the initialization of LS is set to zero.
SDIP can also be solved by generalized singular value decom-

position and the linearization can be obtained in accordance
with (17).

2.6. Time complexity analysis

Suppose that we are given N training samples in a D dimen-
sional space. The time complexity of DIP contains two parts.
One part is for the computation of the whole alignment matrix L.
The time complexity of this part is O((DþK)�N2), where K is the
number of nearest neighbor samples. When KooD, we have
O(D�N2). The other part is for the computation of the eigenvalue
problem. The time complexity of this part is O(N3). Therefore, the
whole time complexity of DIP is O(D�N2

þN3). The time com-
plexity of SDIP is the same as that of DIP but N refers to the total
number of training samples including unlabeled samples.
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3. Experiments

We evaluate the performance of the proposed DIP with five
representative algorithms, including PCA [1,11], LDA [8], SLPP
(LPP1 in [7]), MFA [30] and DLA [32]. These algorithms have
certain merits in their own rights. PCA and LPP are unsupervised
algorithms that do not consider the class label information. LDA,
MFA and DLA are all supervised algorithms.
Fig. 1. Example face images come from different dataset. The first row selects from

Fig. 2. Face recognition rate vs. dimensionality reduction on the validation sets of OR

training and (d) eight samples for training.
We randomly divided datasets that constructed from each
dataset into three separate sets, i.e., validation set, training set
and test set. Validation set can be used to tune the optimal
parameters in algorithms. For the proposed DIP algorithm, valida-
tion set was used to determine the important parameters that
include k1 (the number of intra-class samples), k2 (the number
of inter-class samples), g (the ratio of information fusion) and d

(the subspace dimension). Training set was used to learn the
ORL; the second row selects from YALE; and the third row selects from FERET.

L: (a) two samples for training, (b) four samples for training, (c) six samples for
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projection matrix and low-dimensional representation of training
samples. The test set was used for performance evaluation. The
accuracy is the percentage classified correctly of samples in the
test set. We use the Nearest Neighbor (NN) rule in classification
during validation and test stages.

Before we conduct LDA, SLPP, MFA, DLA and DIP, we first use
PCA to remove redundant information. In the PCA step, N–C

dimension of samples are retained to ensure that X(Dp–Wp)XT

[30] in MFA and within-scatter matrix Sw in LDA [18] are non-
singular for these algorithms. Although LPP, DLA and DIP
Table 2
Best recognition rates (%) of six algorithms on the ORL testing dataset.

Number of

training samples

2 4 6 8

PCA 69.97(69) 84.17(63) 88.75(70) 94.75(66)

LDA 76.44(30) 92.21(39) 95.2(38) 97.62(39)

SLPP 78.75(39) 92.0(39) 94.65(39) 97.52(44)

MFA 76.34(29) 92.42(51) 95.75(61) 97.0(68)

DLA 83.59(62) 94.71(70) 96.41(30) 98.13(25)

DIP 83.5(54) 95.83(38) 97.6(62) 99.25(63)

The number in the parentheses is the reduced dimensions.

The bold values indicate the highest rates obtained corresponding to each column.

Fig. 3. Face recognition rate vs. dimensionality reduction on the validation sets of YALE

training and (d) nine samples for training.
algorithms have no singularity problem, we first apply PCA
projection and subspaces are set N–1 dimensions.

We selected three face image datasets that include ORL [28],
YALE [9] and FERET [20]. Fig. 1 shows example images of ORL,
YALE and FERET datasets. In order to conduct face recognition, we
align all face images according to the eye position and linearly
rescale each pixel of image to gray level of 256. After all images
were normalized to 32�32 pixel array, we scanned them into a
long vector.

We choose the training samples as reference of each class to
evaluate performance, since k-nearest-neighbor was utilized to
classify the test samples. These experiments were independently
conducted ten times and we reported the averaged accuracy.
3.1. ORL dataset

In the Cambridge ORL dataset, there are 400 images collected
from 40 individuals. Ten images were sampled from each indivi-
dual with varying lighting, facial expressions and facial details
(glasses/no-glasses). These images were taken in the same dark
background color. In the stage of training, we randomly selected
different numbers (2, 4, 6, 8) of images from each individual to
construct the training set. The rest of the images were divided
equally among test set and validation set. Fig. 2 shows the
: (a) three samples for training, (b) five samples for training, (c) seven samples for
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average accuracy versus the subspace dimensions on the valida-
tion set. Table 2 reports the best accuracy and corresponding
dimension of all the algorithms on the test set. Furthermore,
Fig. 8(a) shows box-and-whisker plots of DIP and DLA to describe
the recognition performances with statistical significance. We
observe that DIP algorithm outperforms the others in general
except for the situation that the training samples from each
individual is 2. Parameters k1 , k2 are important for patch building
and the trade-off parameter g is important for information
infusion. Section 3.4 shows how to choose these three parameters
of DIP.
3.2. YALE dataset

The YALE dataset consists of 165 frontal view face images
collected from 15 individuals. There are eleven images for each
individual with varying facial expressions, or configurations. In
the stage of training, we randomly selected different numbers
(3, 5, 7, 9) of images from each individual to construct the training
set. The rest of the images were divided equally among test set
and validation set. Fig. 3 shows the average accuracy versus the
subspace dimensions on the validation set. Table 3 reports the
best accuracy and the corresponding dimension of all the algo-
rithms on the test set. Fig. 8(b) shows box-and-whisker plots of
DIP and DLA to describe the recognition performances with
statistical significance. We observe that DIP algorithm outper-
forms the others.
Table 3
Best recognition rates (%) of six algorithms on the YALE testing dataset.

Number of

training samples

3 5 7 9

PCA 49.08(44) 58.44(70) 61.0(45) 67.0(37)

LDA 58.75(14) 76.11(14) 79.5(14) 82.0(14)

SLPP 65.08(13) 77.78(15) 81.33(14) 81.67(14)

MFA 59.42(13) 72.11(21) 81.83(23) 84.33(58)

DLA 63.92(17) 79.22(31) 82.67(29) 86.33(14)

DIP 65.67(18) 80.67(38) 83.5(14) 88.67(14)

The number in the parentheses is the reduced dimensions.

The bold values indicate the highest rates obtained corresponding to each column.

Fig. 4. Face recognition rate vs. dimensionality reduction on the validation sets
3.3. FERET dataset

The complete FERET dataset contains 13,539 face images
collected from 1565 individuals. All the images vary in pose,
illumination, size, facial expression and age. In our experiment,
100 individuals, having seven images, were randomly selected.
In the stage of training, we randomly selected different numbers
(3, 5) of images from each individual to construct the training set.
The rest of the images were divided equally among test set and
validation set. Fig. 4 shows the average accuracy versus the
subspace dimensions on the validation set. Table 4 reports the
best accuracy and corresponding dimension of all the algorithms
on the test set. In order to report the recognition performances
with statistical significance, we perform box-and-whisker plots of
DIP and DLA in Fig. 8(c). It can be seen that DIP performs better
than other algorithms.
3.4. Parameter selection

DIP has three parameters, i.e. patch building parameters k1, k2

and trade-off parameter g. Effects of these parameters on the
recognition accuracy were studied in this section. In the valida-
tion phase, we selected eight samples in each class of the ORL
dataset and the Yale dataset. Since there are seven samples in
each class of the FERET dataset, we selected five samples in each
class of the FERET as validating set. In the experiment, we fixed
the selected subspace dimension to 30.

At first, we analyze the effect of the trade-off parameter g, by
fixing patch building parameters k1¼3 and k2¼1. In Fig. 5, the
correlation between trade-off parameter g and the recognition
of FERET: (a) three samples for training and (b) five samples for training.

Table 4
Best recognition rates (%) of six algorithms on the FETET testing dataset.

Number of

training samples

3 5

PCA 40.33(70) 50.9(68)

LDA 50.2(31) 56.05(62)

SLPP 41.9(70) 44.85(69)

MFA 54.67(36) 52.65(70)

DLA 84.85(31) 91.45(26)

DIP 85.75(14) 92.75(25)

The number in the parentheses is the reduced dimensions.

The bold values indicate the highest rates obtained corresponding to each column.



Fig. 5. Trade-off parameter vs. face recognition rate.
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Fig. 6. (a) Face recognition rate vs. k1 and (b) face recognition rate vs. k2.

Fig. 7. Face recognition rate vs. k1 and k2.
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rate of the face recognition are shown. Base on the figures, we
observe that the best face recognition rates are obtained when g is
neither too small nor too large. This reveals the optimal face
recognition rate is a balance between the local geometry and the
discriminative information. Therefore, we can conclude that by
using a proper trade-off parameter, the local geometry and the
discriminative informative can be effectively fused.

Secondly, we analyze the effects of patch building parameters k1

(the number of neighbor samples of intra-class) and k2 (the number
of neighbor samples of inter-class) on the face recognition rates
based on the YALE dataset, by fixing trade-off parameter g¼1. Nine
samples in each class were selected in the validation stage, the rest
were used for test. We fixed the selected subspace dimension to 30.

Suppose Ni is the training sample number in each class, we vary
k1 from 1 to Ni–1(¼8) by fixing k2 to an arbitrary value that is not
greater than N–Ni in order to achieve the face recognition rate curve.
Fig. 6(a) shows face recognition rate curve with respect to k1. By
fixing k2¼2, the peak of curve can be acquired when k1¼6. We vary
k2 from 1 to N–Ni(¼126) by fixing k1¼6 to achieve another face
recognition rate curve. Fig. 6(b) shows face recognition rate curve
with respect to k2. The peak of curve can be acquired when k2¼2.
We also vary k1 from 1 to 8 and k2 from 1 to 126 simultaneously.
Fig. 7 shows that best face recognition rate with the corresponding



Fig. 8. Recognition performances with statistical significance. Note that the number in the parentheses is number of training samples from each class.

Table 5
Best recognition rates (%) of DIP and SDIP on the YALE dataset.

2 labeled 4 labeled

3 unlabeled

DIP 55.37(12) 73.97(21)

SDIP 56.22(18) 75.12(30)

5 unlabeled

DIP 55.56(16) 74.27(20)

SDIP 57.16(17) 76.0(14)

The number in the parentheses is the reduced dimensions.

The bold values indicate the highest rates obtained corresponding to each column.
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k1¼6 and k2¼2 in this experiment. Since patch building parameters
k1 and k2 suggest that the algorithm models the range of local
neighborhood, therefore, we can conclude that DIP can achieve
better performance in the local neighborhood other than the global
structure.

3.5. Semi-supervised experiments

We compare SDIP and DIP based on the YALE dataset. We
independently conducted the experiment ten times and reported
the averaged accuracy. In the stage of training, we randomly
selected different numbers (2, 4) of images with labels and different
numbers (3, 5) of images without labels from each individual to
construct the training set. The rest of image build of test set for the
test stage. In fact, the number of training samples without labels has
no effects in training DIP. It can be concluded from Table 5 that
unlabeled samples are useful to improve recognition rates.

3.6. Discussion

We have a number of interesting points based on the experi-
ments above:
1.
 DIP models both the local geometric information and discrimi-
native information. Therefore, it works better than other algo-
rithms such as PCA, LDA, SLPP, MFA and DLA. We note that
although MFA considers both two aspects, its recognition rate is
not as good as DIP. Because PCA used in MFA for data pre-
processing discards useful discriminative information and MFA
ignores the discriminative information carried by non-marginal
samples of each class. The recognition rate achieved by DLA is
lower than that achieved by DIP, because DLA does not properly
handle the pairwise measurements in the intra-class samples.
2.
 Fig. 3(a) and (b) show that the decline in recognition rate emerges
with the increase of the dimension of DIP subspace, when a
classification optimal dimension of DIP subspace is achieved. This
phenomenon can be explained by the reason that the training set
size is much smaller than the dimension of sample.
3.
 Figs. 5–7 show that the performance of DIP is robust to wide
ranges of the trade-off parameter g, the number of intra-class
samples k1 and the number of inter-class samples k2 in our
experiments.
4.
 It is possible to extend DLA and LPP to their semi-supervised
versions for modeling the marginal distribution of the sam-
ples. However, it is direct to foresee that semi-DIP outperforms
semi-DLA and semi-LPP because DIP outperforms DLA and LPP,
because DIP enjoys several advantages compared with DLA
and LPP.

4. Conclusion

This paper presented a new dimensionality reduction algorithm,
termed Discriminative Information Preservation (DIP), under the
framework of PAF. In contrast to other popular manifold learning
algorithms, DIP preserves both the local geometry of the intra-class
samples and the discriminative information of the inter-class sam-
ples in part optimization; and avoids computing the inverse of a
matrix. Experiments on face recognition show the effectiveness of
DIP by comparing with popular dimensionality reduction algorithms,
e.g., PCA, LDA, SLPP, MFA, DLA. In the future, we will apply the
proposed DIP algorithm to other applications, e.g., image annotation,
object classification, scene analysis. Since DIP has three important
parameters that determine the algorithm performance, therefore,
automatic selection of the parameters is urgent to deeply study.
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